Comparison Probabilistic Latent Semantic Indexing Model In Chinese Information Retrieval

被引:0
|
作者
Xie Fang [1 ]
Liu Xiaoguang [2 ]
Hu Quan [3 ]
机构
[1] Hubei Univ Technol, Coll Comp Sci, Wuhan 430068, Peoples R China
[2] Nankai Univ, Coll Informat Technol, Tianjin 300071, Peoples R China
[3] Huazhong Normal Univ, Coll Phys Sci & Technol, Wuhan 430079, Peoples R China
关键词
probabilistic latent semantic indexing; Chinese information retrieval; N-Grams retrieval; word segmentation;
D O I
10.1109/IFITA.2009.532
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the increasing of information on Internet, web mining has been the focus of information retrieval By a certain metric of similarity, web clustering groups the similar web documents. But the classical algorithms of clustering are aimless in searching the solution space and absent of semantic characters. In this paper, the probabilistic latent semantic indexing (PLSI) models which using word segmentation, two-grams and key words extraction separately are compared As comparison, vector models using different Chinese information retrieval technologies are also tested in the same time The experimental results show that the correct word segmentation can improve precision of information retrieval obviously to PLSI model. But it isn't effective to vector space model And index based on key words extraction obtains highest accuracy rate to PLSI model.
引用
收藏
页码:559 / +
页数:2
相关论文
共 50 条
  • [1] A probabilistic model for latent semantic indexing in information retrieval and filtering
    Ding, CHQ
    [J]. COMPUTATIONAL INFORMATION RETRIEVAL, 2001, : 65 - 73
  • [2] Downdating the latent semantic indexing model for conceptual information retrieval
    Witter, DI
    Berry, MW
    [J]. COMPUTER JOURNAL, 1998, 41 (08): : 589 - 601
  • [3] A probabilistic model for Latent Semantic Indexing
    Ding, CHQ
    [J]. JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 2005, 56 (06): : 597 - 608
  • [4] A neural network model for information retrieval using latent semantic indexing
    Syu, I
    Lang, SD
    Deo, N
    [J]. ICNN - 1996 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS. 1-4, 1996, : 1318 - 1323
  • [5] An Information Retrieval Model Based on Latent Semantic Indexing with Intelligent Preprocessing
    Kumar, Ch.
    Gupta, Ankush
    Batool, Mahmooda
    Trehan, Shagun
    [J]. JOURNAL OF INFORMATION & KNOWLEDGE MANAGEMENT, 2005, 4 (04) : 279 - 285
  • [6] A subspace-based model for latent semantic indexing in information retrieval
    Zha, HY
    Simon, H
    [J]. DIMENSION REDUCTION, COMPUTATIONAL COMPLEXITY AND INFORMATION, 1998, 30 : 315 - 320
  • [7] Using latent semantic indexing for multilanguage information retrieval
    Berry, MW
    Young, PG
    [J]. COMPUTERS AND THE HUMANITIES, 1995, 29 (06): : 413 - 429
  • [8] Personal information retrieval based on latent semantic indexing
    Yang, Z
    Deng, GS
    [J]. PROCEEDINGS OF 2002 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE & ENGINEERING, VOLS I AND II, 2002, : 287 - 291
  • [9] IMPROVING INFORMATION-RETRIEVAL WITH LATENT SEMANTIC INDEXING
    DEERWESTER, S
    DUMAIS, S
    LANDAUER, T
    FURNAS, G
    BECK, L
    [J]. PROCEEDINGS OF THE ASIS ANNUAL MEETING, 1988, 25 : 36 - 40
  • [10] Efficient storage and retrieval of probabilistic latent semantic information for information retrieval
    Laurence A. F. Park
    Kotagiri Ramamohanarao
    [J]. The VLDB Journal, 2009, 18 : 141 - 155