ATPGNN: Reconstruction of Neighborhood in Graph Neural Networks With Attention-Based Topological Patterns

被引:1
|
作者
Wang, Kehao [1 ]
Qian, Hantao [1 ]
Zeng, Xuming [2 ]
Chen, Mozi [2 ]
Liu, Kezhong [2 ]
Zheng, Kai [2 ]
Zhou, Pan [3 ]
Wu, Dapeng [4 ]
机构
[1] Wuhan Univ Technol, Sch Informat Engn, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Sch Nav, Wuhan 430063, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Cyber Sci & Engn, Hubei Engn Res Ctr Big Data Secur, Wuhan 430074, Peoples R China
[4] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
来源
IEEE ACCESS | 2021年 / 9卷
基金
中国国家自然科学基金;
关键词
Semi-supervised node classification; GNNs; network embedding; PROPERTY;
D O I
10.1109/ACCESS.2021.3050541
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Graph Neural Networks (GNNs) have been applied in many fields of semi-supervised node classification for non-Euclidean data. However, some GNNs cannot make good use of positive information brought by nodes which are far away from each central node for aggregation operations. These remote nodes with positive information can enhance the representation of the central node. Some GNNs also ignore rich structure information around each central node's surroundings or entire network. Besides, most of GNNs have a fixed architecture and cannot change their components to adapt to different tasks. In this article, we propose a semi-supervised learning platform ATPGNN with three variable components to overcome the above shortcomings. This novel model can fully adapt to different tasks by changing its components and support inductive learning. The key idea is that we first create a high-order topology graph, which is from similarity of node structure information. Specifically, we reconstruct the relationships between nodes in a potential space obtained by network embedding in graph. Second, we introduce graph representation learning methods to extract representation information of remote nodes on the high-order topology graph. Third, we use some network embedding methods to get graph structure information of each node. Finally, we combine the representation information of remote nodes, graph structure information and feature for each node by attention mechanism, and apply them to learning node representation in graph. Extensive experiments on real attributed networks demonstrate the superiority of the proposed model against traditional GNNs.
引用
收藏
页码:9218 / 9234
页数:17
相关论文
共 50 条
  • [1] Attention-based graph neural networks: a survey
    Chengcheng Sun
    Chenhao Li
    Xiang Lin
    Tianji Zheng
    Fanrong Meng
    Xiaobin Rui
    Zhixiao Wang
    [J]. Artificial Intelligence Review, 2023, 56 : 2263 - 2310
  • [2] Attention-based graph neural networks: a survey
    Sun, Chengcheng
    Li, Chenhao
    Lin, Xiang
    Zheng, Tianji
    Meng, Fanrong
    Rui, Xiaobin
    Wang, Zhixiao
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (SUPPL 2) : 2263 - 2310
  • [3] Revisiting Attention-Based Graph Neural Networks for Graph Classification
    Tao, Ye
    Li, Ying
    Wu, Zhonghai
    [J]. PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XVII, PPSN 2022, PT I, 2022, 13398 : 442 - 458
  • [4] Seizure localisation with attention-based graph neural networks
    Grattarola, Daniele
    Livi, Lorenzo
    Alippi, Cesare
    Wennberg, Richard
    Valiante, Taufik A.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2022, 203
  • [5] Demystifying Oversmoothing in Attention-Based Graph Neural Networks
    Wu, Xinyi
    Ajorlou, Amir
    Wu, Zihui
    Jadbabaie, Ali
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [6] Global Attention-Based Graph Neural Networks for Node Classification
    Jiusheng Chen
    Chengyuan Fang
    Xiaoyu Zhang
    [J]. Neural Processing Letters, 2023, 55 : 4127 - 4150
  • [7] Global Attention-Based Graph Neural Networks for Node Classification
    Chen, Jiusheng
    Fang, Chengyuan
    Zhang, Xiaoyu
    [J]. NEURAL PROCESSING LETTERS, 2023, 55 (04) : 4127 - 4150
  • [8] Infrared spectra prediction using attention-based graph neural networks
    Saquer, Naseem
    Iqbal, Razib
    Ellis, Joshua D.
    Yoshimatsu, Keiichi
    [J]. DIGITAL DISCOVERY, 2024, 3 (03): : 602 - 609
  • [9] Predicting Cardiotoxicity of Molecules Using Attention-Based Graph Neural Networks
    Vinh, Tuan
    Nguyen, Loc
    Trinh, Quang H.
    Nguyen-Vo, Thanh-Hoang
    Nguyen, Binh P.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (06) : 1816 - 1827
  • [10] An Attention-Based Graph Neural Network for Spam Bot Detection in Social Networks
    Zhao, Chensu
    Xin, Yang
    Li, Xuefeng
    Zhu, Hongliang
    Yang, Yixian
    Chen, Yuling
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (22): : 1 - 15