Time-limited optimal dynamics beyond the quantum speed limit

被引:14
|
作者
Gajdacz, Miroslav [1 ,2 ]
Das, Kunal K. [3 ]
Arlt, Jan [1 ]
Sherson, Jacob F. [1 ]
Opatrny, Tomas [2 ]
机构
[1] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark
[2] Palacky Univ, Dept Opt, Fac Sci, Olomouc 77146, Czech Republic
[3] Kutztown State Univ, Dept Phys Sci, Kutztown, PA 19530 USA
来源
PHYSICAL REVIEW A | 2015年 / 92卷 / 06期
基金
美国国家科学基金会;
关键词
STATISTICAL DISTANCE; GEOMETRY;
D O I
10.1103/PhysRevA.92.062106
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The quantum speed limit sets the minimum time required to transfer a quantum system completely into a given target state. At shorter times the higher operation speed results in a loss of fidelity. Here we quantify the trade-off between the fidelity and the duration in a system driven by a time-varying control. The problem is addressed in the framework of Hilbert space geometry offering an intuitive interpretation of optimal control algorithms. This approach leads to a necessary criterion for control optimality applicable as a measure of algorithm convergence. The time fidelity trade-off expressed in terms of the direct Hilbert velocity provides a robust prediction of the quantum speed limit and allows one to adapt the control optimization such that it yields a predefined fidelity. The results are verified numerically in a multilevel system with a constrained Hamiltonian and a classification scheme for the control sequences is proposed based on their optimizability.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] CONCENTRATION, SPEED, AND PRECISION IN TIME-LIMITED TASKS
    ROSKAM, EE
    VANBREUKELEN, G
    JANSEN, R
    [J]. HUMAN INFORMATION PROCESSING: MEASURES, MECHANISMS, AND MODELS, 1989, : 291 - 310
  • [2] Optimal patch time allocation for time-limited foragers
    Wajnberg, E
    Bernhard, P
    Hamelin, F
    Boivin, G
    [J]. BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY, 2006, 60 (01) : 1 - 10
  • [3] Optimal patch time allocation for time-limited foragers
    Eric Wajnberg
    Pierre Bernhard
    Frédéric Hamelin
    Guy Boivin
    [J]. Behavioral Ecology and Sociobiology, 2006, 60 : 1 - 10
  • [4] OPTIMAL HABITAT SELECTION IN TIME-LIMITED DISPERSERS
    WARD, SA
    [J]. AMERICAN NATURALIST, 1987, 129 (04): : 568 - 579
  • [5] Optimal strategy for time-limited sequential search
    Krishnan, V. V.
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2007, 37 (07) : 1042 - 1049
  • [6] Designing time-limited cyber promotions: Effects of time limit and involvement
    Teng, Ching-I.
    Huang, Li-Shia
    [J]. CYBERPSYCHOLOGY & BEHAVIOR, 2007, 10 (01): : 141 - 144
  • [7] TIME-LIMITED
    WEBB, NB
    [J]. SOCIAL CASEWORK-JOURNAL OF CONTEMPORARY SOCIAL WORK, 1984, 65 (08): : 486 - 486
  • [8] Quantum speed limit and optimal control of many-boson dynamics
    Brouzos, Ioannis
    Streltsov, Alexej I.
    Negretti, Antonio
    Said, Ressa S.
    Caneva, Tommaso
    Montangero, Simone
    Calarco, Tommaso
    [J]. PHYSICAL REVIEW A, 2015, 92 (06)
  • [9] Optimal Control at the Quantum Speed Limit
    Caneva, T.
    Murphy, M.
    Calarco, T.
    Fazio, R.
    Montangero, S.
    Giovannetti, V.
    Santoro, G. E.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (24)
  • [10] Creating Time-Limited Attributes for Time-Limited Services in Cloud Computing
    Moradbeikie, Azin
    Abrishami, Saied
    Abbasi, Hasan
    [J]. INTERNATIONAL JOURNAL OF INFORMATION SECURITY AND PRIVACY, 2016, 10 (04) : 44 - 57