Hofstadter's butterfly in quantum geometry

被引:39
|
作者
Hatsuda, Yasuyuki [1 ,2 ]
Katsura, Hosho [3 ]
Tachikawa, Yuji [4 ]
机构
[1] Univ Geneva, Dept Phys Theor, CH-1211 Geneva, Switzerland
[2] Univ Geneva, Sect Math, CH-1211 Geneva, Switzerland
[3] Univ Tokyo, Grad Sch Sci, Dept Phys, 7-3-1 Hongo, Tokyo 1130033, Japan
[4] Univ Tokyo, Kavli Inst Phys & Math Universe, 5-1-5 Kashiwa, Chiba 2778583, Japan
来源
NEW JOURNAL OF PHYSICS | 2016年 / 18卷
关键词
Hofstadter's butterfly; string theory; quantum eigenvalue problems; Calabi-Yau geometry; QUANTIZED HALL CONDUCTANCE; BETHE-ANSATZ; ELECTRONS; STATES;
D O I
10.1088/1367-2630/18/10/103023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We point out that the recent conjectural solution to the spectral problem for the Hamiltonian H = e(x) + e (x) + e(p) + e (p) in terms of the refined topological invariants of a local Calabi-Yau (CY) geometry has an intimate relation with two-dimensional non-interacting electrons moving in a periodic potential under a uniform magnetic field. In particular, we find that the quantum A-period, determining the relation between the energy eigenvalue and the Kehler modulus of the CY, can be found explicitly when the quantum parameter q = e(i (h) over bar) is a root of unity, that its branch cuts are given by Hofstadter's butterfly, and that its imaginary part counts the number of states of the Hofstadter Hamiltonian. The modular double operation, exchanging (h) over bar and = <(<(h)over tilde>)over bar> = 4 pi(2)/(h) over bar, plays an important role.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Hofstadter butterfly as quantum phase diagram
    Osadchy, D
    Avron, JE
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (12) : 5665 - 5671
  • [2] Quantum Hall effect on the Hofstadter butterfly
    Koshino, M
    Ando, T
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2004, 73 (12) : 3243 - 3246
  • [3] An observation on Hofstadter's butterfly
    Claro, F
    Huber, G
    [J]. PHYSICS TODAY, 2004, 57 (03) : 17 - 18
  • [4] Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices
    Dean, C. R.
    Wang, L.
    Maher, P.
    Forsythe, C.
    Ghahari, F.
    Gao, Y.
    Katoch, J.
    Ishigami, M.
    Moon, P.
    Koshino, M.
    Taniguchi, T.
    Watanabe, K.
    Shepard, K. L.
    Hone, J.
    Kim, P.
    [J]. NATURE, 2013, 497 (7451) : 598 - 602
  • [5] Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices
    C. R. Dean
    L. Wang
    P. Maher
    C. Forsythe
    F. Ghahari
    Y. Gao
    J. Katoch
    M. Ishigami
    P. Moon
    M. Koshino
    T. Taniguchi
    K. Watanabe
    K. L. Shepard
    J. Hone
    P. Kim
    [J]. Nature, 2013, 497 : 598 - 602
  • [6] The localization and the quantum Hall effect on the Hofstadter butterfly
    Koshino, M
    Ando, T
    [J]. Physics of Semiconductors, Pts A and B, 2005, 772 : 537 - 538
  • [7] Probing the Hofstadter butterfly with the quantum oscillation of magnetization
    Xu, W. H.
    Yang, L. P.
    Qin, M. P.
    Xiang, T.
    [J]. PHYSICAL REVIEW B, 2008, 78 (24):
  • [8] Hofstadter's butterfly and Langlands duality
    Ikeda, Kazuki
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (06)
  • [9] Covering property of Hofstadter's butterfly
    Ketzmerick, R
    Kruse, K
    Steinbach, F
    Geisel, T
    [J]. PHYSICAL REVIEW B, 1998, 58 (15): : 9881 - 9885
  • [10] Quantum Hall Effect of Massless Dirac Fermions and Free Fermions in Hofstadter's Butterfly
    Yoshioka, Nobuyuki
    Matsuura, Hiroyasu
    Ogata, Masao
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2016, 85 (06)