SQUARE MEANS VERSUS DIRICHLET INTEGRALS FOR HARMONIC FUNCTIONS ON RIEMANN SURFACES

被引:0
|
作者
Masaoka, Hiroaki [1 ]
Nakai, Mitsuru [1 ]
机构
[1] Kyoto Sangyou Univ, Fac Sci, Dept Math, Kita Ku, Kyoto 6038555, Japan
关键词
afforested surface; Dirichlet finite; Hardy space; Joukowski coordinate; mean bounded; Parreau decomposition; quasibounded; singular; Wiener harmonic boundary;
D O I
10.2748/tmj/1341249373
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show rather unexpectedly and surprisingly the existence of a hyperbolic Riemann surface W enjoying the following two properties: firstly, the converse of the celebrated Parreau inclusion relation that the harmonic Hardy space H M-2(W) with exponent 2 consisting of square mean bounded harmonic functions on W includes the space H D(W) of Dirichlet finite harmonic functions on W, and a fortiori H M-2(W) = H D(W), is valid; secondly, the linear dimension of H M-2(W), hence also that of H D(W), is infinite.
引用
收藏
页码:233 / 259
页数:27
相关论文
共 50 条