RGB-D depth-map restoration using smooth depth neighborhood supports

被引:4
|
作者
Liu, Wei [1 ,2 ]
Xue, Haoyang [1 ,2 ]
Yu, Zhongjie [1 ,2 ]
Wu, Qiang [3 ]
Yang, Jie [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai 200240, Peoples R China
[2] Minist Educ, Key Lab Syst Control & Informat Proc, Shanghai 200240, Peoples R China
[3] Univ Technol Sydney, Sch Comp & Commun, Sydney, NSW 2007, Australia
关键词
depth map restoration; RGB-D; joint bilateral filter; smooth depth neighborhood supports; RECOVERY; FUSION;
D O I
10.1117/1.JEI.24.3.033015
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A method to restore the depth map of an RGB-D image using smooth depth neighborhood (SDN) supports is presented. The SDN supports are computed based on the corresponding color image of the depth map. Compared with the most widely used square supports, the proposed SDN supports can well-capture the local structure of the object. Only pixels with similar depth values are allowed to be included in the support. We combine our SDN supports with the joint bilateral filter (JBF) to form the SDN-JBF and use it to restore depth maps. Experimental results show that our SDN-JBF can not only rectify the misaligned depth pixels but also preserve sharp depth discontinuities. (C) 2015 SPIE and IS&T
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Shape Preserving RGB-D Depth Map Restoration
    Liu, Wei
    Xue, Haoyang
    Gu, Yun
    Yang, Jie
    Wu, Qiang
    Jia, Zhenhong
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2014, PT III, 2014, 8836 : 150 - 158
  • [2] Motion-Depth: RGB-D Depth Map Enhancement with Motion and Depth in Complement
    Hui, Tak-Wai
    Ngan, King Ngi
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 3962 - 3969
  • [3] Demonstrating the Vulnerability of RGB-D based Face Recognition to GAN-generated Depth-map Injection
    Chiesa, Valeria
    Galdi, Chiara
    Dugelay, Jean-Luc
    [J]. PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS (ICPRAM), 2021, : 44 - 50
  • [4] DEPTH ENHANCEMENT USING RGB-D GUIDED FILTERING
    Hui, Tak-Wai
    Ngan, King Ngi
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 3832 - 3836
  • [5] Depth Map Characterization of RGB-D Sensor for Obstacle Detection System
    Rivera, Xyza Vada Maree L.
    Cadubla, Ruel Mark D.
    Alemania, Jaymark M.
    Valdellon, Raniel E.
    Villanueva, Rinzi Rae Q.
    Vicerra, Ryan Rhay P.
    Roxas, Edison A.
    Dela Cruz, Angelo R.
    [J]. 2015 INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY,COMMUNICATION AND CONTROL, ENVIRONMENT AND MANAGEMENT (HNICEM), 2015, : 549 - +
  • [6] SPARSITY-BASED DEPTH IMAGE RESTORATION USING SURFACE PRIORS AND RGB-D CORRELATIONS
    Deng, Xiaowei
    Wu, Xiaolin
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 3881 - 3885
  • [7] Dense RGB-D visual odometry using inverse depth
    Gutierrez-Gomez, Daniel
    Mayol-Cuevas, Walterio
    Guerrero, J. J.
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2016, 75 : 571 - 583
  • [8] High-Quality Depth Map Upsampling and Completion for RGB-D Cameras
    Park, Jaesik
    Kim, Hyeongwoo
    Tai, Yu-Wing
    Brown, Michael S.
    Kweon, In So
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (12) : 5559 - 5572
  • [9] SUPERPIXEL-BASED DEPTH MAP INPAINTING FOR RGB-D VIEW SYNTHESIS
    Buyssens, P.
    Daisy, M.
    Tschumperle, D.
    Lezoray, O.
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 4332 - 4336
  • [10] Depth Error Elimination for RGB-D Cameras
    Gao, Yue
    Yang, You
    Zhen, Yi
    Dai, Qionghai
    [J]. ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2015, 6 (02)