Discriminative Spatiotemporal Local Binary Pattern with Revisited Integral Projection for Spontaneous Facial Micro-Expression Recognition

被引:136
|
作者
Huang, Xiaohua [1 ,2 ]
Wang, Su-Jing [3 ,4 ]
Liu, Xin [5 ]
Zhao, Guoying [6 ]
Feng, Xiaoyi [7 ]
Pietikainen, Matti [5 ]
机构
[1] Nanjing Inst Technol, Sch Comp Engn, Nanjing 21167, Jiangsu, Peoples R China
[2] Univ Oulu, FI-90014 Oulu, Finland
[3] Inst Psychol, CAS Key Lab Behav Sci, Beijing 100101, Peoples R China
[4] Univ Chinese Acad Sci, Dept Psychol, Beijing 100101, Peoples R China
[5] Univ Oulu, Ctr Machine Vis & Signal Anal, FI-90014 Oulu, Finland
[6] Northwest Univ, Sch Informat & Technol, Xian 710065, Shaanxi, Peoples R China
[7] Northwestern Polytech Univ, Sch Elect & Informat, Xian 710065, Shaanxi, Peoples R China
基金
芬兰科学院; 北京市自然科学基金; 中国国家自然科学基金;
关键词
Spontaneous facial micro-expression; spatiotemporal; local binary pattern; integral projection; feature selection; OPTICAL-FLOW; TEXTURE;
D O I
10.1109/TAFFC.2017.2713359
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, there have been increasing interests in inferring mirco-expression from facial image sequences. Due to subtle facial movement of micro-expressions, feature extraction has become an important and critical issue for spontaneous facial micro-expression recognition. Recent works used spatiotemporal local binary pattern (STLBP) for micro-expression recognition and considered dynamic texture information to represent face images. However, they miss the shape attribute of face images. On the other hand, they extract the spatiotemporal features from the global face regions while ignore the discriminative information between two micro-expression classes. The above-mentioned problems seriously limit the application of STLBP to micro-expression recognition. In this paper, we propose a discriminative spatiotemporal local binary pattern based on an integral projection to resolve the problems of STLBP for micro-expression recognition. First, we revisit an integral projection for preserving the shape attribute of micro-expressions by using robust principal component analysis. Furthermore, a revisited integral projection is incorporated with local binary pattern across spatial and temporal domains. Specifically, we extract the novel spatiotemporal features incorporating shape attributes into spatiotemporal texture features. For increasing the discrimination of micro-expressions, we propose a new feature selection based on Laplacian method to extract the discriminative information for facial micro-expression recognition. Intensive experiments are conducted on three availably published micro-expression databases including CASME, CASME2 and SMIC databases. We compare our method with the state-of-the-art algorithms. Experimental results demonstrate that our proposed method achieves promising performance for micro-expression recognition.
引用
收藏
页码:32 / 47
页数:16
相关论文
共 50 条
  • [1] Facial Micro-Expression Recognition using Spatiotemporal Local Binary Pattern with Integral Projection
    Huang, Xiaohua
    Wang, Su-Jing
    Zhao, Guoying
    Pietikainen, Matti
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOP (ICCVW), 2015, : 1 - 9
  • [2] Spontaneous Facial Micro-expression Analysis using Spatiotemporal Local Radon-based Binary Pattern
    Huang, Xiaohua
    Zhao, Guoying
    [J]. 2017 INTERNATIONAL CONFERENCE ON THE FRONTIERS AND ADVANCES IN DATA SCIENCE (FADS), 2017, : 198 - 203
  • [3] Spatiotemporal Feature Descriptor for Micro-Expression Recognition Using Local Cube Binary Pattern
    Yu, Ming
    Guo, Ziqi
    Yu, Yang
    Wang, Yan
    Cen, Shixin
    [J]. IEEE ACCESS, 2019, 7 : 159214 - 159225
  • [4] Extended Local Binary Patterns for Efficient and Robust Spontaneous Facial Micro-Expression Recognition
    Guo, Chengyu
    Liang, Jingyun
    Zhan, Geng
    Liu, Zhong
    Pietikainen, Matti
    Liu, Li
    [J]. IEEE ACCESS, 2019, 7 : 174517 - 174530
  • [5] Sparse Spatiotemporal Descriptor for Micro-Expression Recognition Using Enhanced Local Cube Binary Pattern
    Cen, Shixin
    Yu, Yang
    Yan, Gang
    Yu, Ming
    Yang, Qing
    [J]. SENSORS, 2020, 20 (16) : 1 - 24
  • [6] Efficient Spatio-Temporal Local Binary Patterns for Spontaneous Facial Micro-Expression Recognition
    Wang, Yandan
    See, John
    Phan, Raphael C. -W.
    Oh, Yee-Hui
    [J]. PLOS ONE, 2015, 10 (05):
  • [7] Spatiotemporal features selection for spontaneous micro-expression recognition
    Yu, Yang
    Duan, Huiyan
    Yu, Ming
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 35 (04) : 4773 - 4784
  • [8] Spontaneous facial micro-expression analysis using Spatiotemporal Completed Local Quantized Patterns
    Huang, Xiaohua
    Zhao, Guoying
    Hong, Xiaopeng
    Zheng, Wenming
    Pietikainen, Matti
    [J]. NEUROCOMPUTING, 2016, 175 : 564 - 578
  • [9] Micro-expression recognition from local facial regions
    Aouayeb, Mouath
    Hamidouche, Wassim
    Soladie, Catherine
    Kpalma, Kidiyo
    Seguier, Renaud
    [J]. SIGNAL PROCESSING-IMAGE COMMUNICATION, 2021, 99
  • [10] A spatiotemporal network using a local spatial difference stack block for facial micro-expression recognition
    Liang, Yan
    Hao, Yan
    Liao, Jiacheng
    Deng, Zhuoran
    Wen, Xing
    Zheng, Zefeng
    Pan, Jiahui
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (04) : 11593 - 11612