Improving RGB-D Point Cloud Registration by Learning Multi-scale Local Linear Transformation

被引:4
|
作者
Wang, Ziming [1 ]
Huo, Xiaoliang [1 ]
Chen, Zhenghao [2 ]
Zhang, Jing [1 ]
Sheng, Lu [1 ]
Xu, Dong [3 ]
机构
[1] Beihang Univ, Sch Software, Beijing, Peoples R China
[2] Univ Sydney, Sch Elect & Informat Engn, Camperdown, NSW, Australia
[3] Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Point cloud registration; Geometric-visual feature extractor; Local linear transformation;
D O I
10.1007/978-3-031-19824-3_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Point cloud registration aims at estimating the geometric transformation between two point cloud scans, in which point-wise correspondence estimation is the key to its success. In addition to previous methods that seek correspondences by hand-crafted or learnt geometric features, recent point cloud registration methods have tried to apply RGB-D data to achieve more accurate correspondence. However, it is not trivial to effectively fuse the geometric and visual information from these two distinctive modalities, especially for the registration problem. In this work, we propose a new Geometry-Aware Visual Feature Extractor (GAVE) that employs multi-scale local linear transformation to progressively fuse these two modalities, where the geometric features from the depth data act as the geometry-dependent convolution kernels to transform the visual features from the RGB data. The resultant visual-geometric features are in canonical feature spaces with alleviated visual dissimilarity caused by geometric changes, by which more reliable correspondence can be achieved. The proposed GAVE module can be readily plugged into recent RGB-D point cloud registration framework. Extensive experiments on 3D Match and ScanNet demonstrate that our method outperforms the state-of-the-art point cloud registration methods even without correspondence or pose supervision.
引用
收藏
页码:175 / 191
页数:17
相关论文
共 50 条
  • [1] PointMBF: A Multi-scale Bidirectional Fusion Network for Unsupervised RGB-D Point Cloud Registration
    Yuan, Mingzhi
    Fu, Kexue
    Li, Zhihao
    Meng, Yucong
    Wang, Manning
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 17648 - 17659
  • [2] Shape Reconstruction from Multiple RGB-D Point Cloud Registration
    Takimoto, Rogerio Y.
    Tsuzuki, Marcos S. G.
    Vogelaar, Renato
    Martins, Thiago C.
    Iwao, Yuma
    Gotoh, Toshiyuki
    Kagei, Seiichiro
    Gallo, Giulliano B.
    Garcia, Marcos A. A.
    Tiba, Hamilton
    [J]. 2014 12TH IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2014, : 349 - +
  • [3] RGB-D point cloud registration via infrared and color camera
    Teng Wan
    Shaoyi Du
    Yiting Xu
    Guanglin Xu
    Zuoyong Li
    Badong Chen
    Yue Gao
    [J]. Multimedia Tools and Applications, 2019, 78 : 33223 - 33246
  • [4] Robust Rigid Point Cloud Registration via RGB-D Images
    Zhong, Saishang
    Li, Yanlei
    Liu, Zheng
    Xie, Zhong
    Chen, Jianguo
    Wang, Weiming
    Liu, Xiuping
    [J]. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2022, 34 (01): : 25 - 35
  • [5] RGB-D Point Cloud Registration Based on Salient Object Detection
    Wan, Teng
    Du, Shaoyi
    Cui, Wenting
    Yao, Runzhao
    Ge, Yuyan
    Li, Ce
    Gao, Yue
    Zheng, Nanning
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (08) : 3547 - 3559
  • [6] RGB-D point cloud registration via infrared and color camera
    Wan, Teng
    Du, Shaoyi
    Xu, Yiting
    Xu, Guanglin
    Li, Zuoyong
    Chen, Badong
    Gao, Yue
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (23) : 33223 - 33246
  • [7] 3D Point Cloud Registration with Multi-Scale Architecture and Unsupervised Transfer Learning
    Horache, Sofiane
    Deschaud, Jean-Emmanuel
    Goulette, Francois
    [J]. 2021 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2021), 2021, : 1351 - 1361
  • [8] Design and Implementation of a RANSAC RGB-D mapping Algorithm for Multi-View Point Cloud Registration
    Tsai, Chi-Yi
    Wang, Chuan-Wei
    Wang, Wei-Yi
    [J]. 2013 CACS INTERNATIONAL AUTOMATIC CONTROL CONFERENCE (CACS), 2013, : 367 - 370
  • [9] Multi-scale fusion for RGB-D indoor semantic segmentation
    Jiang, Shiyi
    Xu, Yang
    Li, Danyang
    Fan, Runze
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01):
  • [10] Multi-scale fusion for RGB-D indoor semantic segmentation
    Shiyi Jiang
    Yang Xu
    Danyang Li
    Runze Fan
    [J]. Scientific Reports, 12 (1)