Non-linear mirror instability

被引:35
|
作者
Rincon, F. [1 ,2 ]
Schekochihin, A. A. [3 ,4 ]
Cowley, S. C. [5 ,6 ]
机构
[1] Univ Toulouse, UPS OMP, IRAP, F-31400 Toulouse, France
[2] CNRS, IRAP, F-31400 Toulouse, France
[3] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3HQ, England
[4] Univ Oxford Merton Coll, Oxford OX1 4JD, England
[5] CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[6] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BZ, England
基金
英国工程与自然科学研究理事会;
关键词
instabilities; magnetic fields; MHD; plasmas; turbulence; solar wind; galaxies clusters: intracluster medium; MAGNETIC-FIELDS; CLUSTER OBSERVATIONS; HYDROMAGNETIC-WAVES; PLASMA; MAGNETOSHEATH; MECHANISM; TURBULENCE; PHYSICS;
D O I
10.1093/mnrasl/slu179
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Slow dynamical changes in magnetic-field strength and invariance of the particles' magnetic moments generate ubiquitous pressure anisotropies in weakly collisional, magnetized astrophysical plasmas. This renders them unstable to fast, small-scale mirror and firehose instabilities, which are capable of exerting feedback on the macroscale dynamics of the system. By way of a new asymptotic theory of the early non-linear evolution of the mirror instability in a plasma subject to slow shearing or compression, we show that the instability does not saturate quasi-linearly at a steady, low-amplitude level. Instead, the trapping of particles in small-scale mirrors leads to non-linear secular growth of magnetic perturbations, delta B/B proportional to t(2/3). Our theory explains recent collisionless simulation results, provides a prediction of the mirror evolution in weakly collisional plasmas and establishes a foundation for a theory of non-linear mirror dynamics with trapping, valid up to delta B/B = O(1).
引用
收藏
页码:L45 / L49
页数:5
相关论文
共 50 条
  • [1] On the non-linear mirror instability
    Pantellini, FGE
    Burgess, D
    Schwartz, SJ
    [J]. PHYSICS OF COLLISIONLESS SHOCKS, 1995, 15 (8-9): : 341 - 344
  • [2] LINEAR AND NON-LINEAR RESISTIVE INSTABILITY STUDIES
    HENDER, TC
    ROBINSON, DC
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 1981, 24 (3-4) : 413 - 419
  • [3] NON-LINEAR THEORY OF CONVECTIVE INSTABILITY
    TIMOFEEV, AV
    [J]. NUCLEAR FUSION, 1964, 4 (04) : 354 - 361
  • [4] PEIERLS INSTABILITY IN NON-LINEAR LATTICES
    WEBER, S
    BUTTNER, H
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1983, 16 (20): : L693 - L698
  • [5] Non-linear analysis of the Rosensweig instability
    Friedrichs, R
    Engel, A
    [J]. EUROPHYSICS LETTERS, 2003, 63 (06): : 826 - 832
  • [6] ON THE NON-LINEAR THEORY OF BUNEMAN INSTABILITY
    GALEEV, AA
    SAGDEYEV, RZ
    SHAPIRO, VD
    SHEVCHENKO, VI
    [J]. ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1981, 81 (02): : 572 - 580
  • [7] NON-LINEAR PROBLEM ON SURFACE INSTABILITY
    GRIGORENKO, AY
    [J]. DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1979, (09): : 722 - 725
  • [8] NON-LINEAR SATURATION OF THE PIERCE INSTABILITY
    JOVANOVIC, D
    [J]. PHYSICA SCRIPTA, 1983, 27 (05): : 376 - 379
  • [9] THE NON-LINEAR INSTABILITY OF A GRAVITATING DISK
    MOROZOV, AG
    [J]. ASTRONOMICHESKII ZHURNAL, 1981, 58 (02): : 244 - 246
  • [10] NON-LINEAR THEORY OF THE WEIBEL INSTABILITY
    LEMONS, DS
    WINSKE, D
    GARY, SP
    [J]. JOURNAL OF PLASMA PHYSICS, 1979, 21 (APR) : 287 - 300