Liouville-type theorems for polyhannonic systems in RN

被引:61
|
作者
Liu, Jiaqun
Guo, Yuxia [1 ]
Zhang, Yajing
机构
[1] Peking Univ, Sch Math, LMAM, Beijing 100871, Peoples R China
[2] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Liouville theorem; polyharmonic systems; moving planes method;
D O I
10.1016/j.jde.2005.10.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we consider the polyharmonic system (-Delta)(m) u = v(alpha), (-Delta)(m) v = in R-N with N > 2m and alpha >= 1, beta >= 1, where (-Delta)(m) is the polyharmonic operator. For 1/(alpha + 1) + 1/ (beta + 1) > (N - 2m)/N, we prove the non-existence of non-negative, radial, smooth solutions. For 1 < alpha, beta < (N + 2m)/(N - 2m), we show the non-existence of non-negative smooth solutions. In addition, for either (N - 2m)beta < N/alpha + 2m or (N - 2m)alpha < N/beta + 2m with alpha, beta > 1, we show the non-existence of non-negative smooth solutions for polyharmonic system of inequalities (-Delta)(m) u >= v(alpha), (-Delta)(m) v >= mu(beta). More general, we can prove that all the above results hold for the system (-Delta)(m) u = v(alpha), (-Delta)(n) v = 0 in RN with N > max(2m, 2n) and alpha >= 1, beta >= 1. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:685 / 709
页数:25
相关论文
共 50 条
  • [1] Liouville-Type Theorems for the Stationary Ideal Magnetohydrodynamics Equations in Rn
    Cai, Lv
    Lai, Ning-An
    Suen, Anthony
    Yuen, Manwai
    Journal of Mathematical Fluid Mechanics, 2024, 26 (04)
  • [2] LIOUVILLE-TYPE THEOREMS
    MUSTAFIN, RF
    MATHEMATICAL NOTES, 1979, 25 (1-2) : 52 - 57
  • [3] LIOUVILLE-TYPE THEOREMS FOR SEMILINEAR ELLIPTIC SYSTEMS
    Zhang Zhengce
    Wang Weimin
    Li Kaitai
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2005, 18 (04): : 304 - 310
  • [4] Liouville-type theorems for semilinear elliptic systems
    Wang, Weimin
    Hong, Li
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (13) : 5380 - 5391
  • [5] Liouville-type theorems for polyharmonic equations in RN and in R+N
    Guo, Yuxia
    Liu, Jiaquan
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2008, 138 : 339 - 359
  • [7] LIOUVILLE-TYPE THEOREMS FOR STABLE SOLUTIONS OF SINGULAR QUASILINEAR ELLIPTIC EQUATIONS IN RN
    Chen, Caisheng
    Song, Hongxue
    Yang, Hongwei
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [8] Liouville-type theorems for fractional Hardy–Hénon systems
    Kui Li
    Meng Yu
    Zhitao Zhang
    Nonlinear Differential Equations and Applications NoDEA, 2024, 31
  • [10] Liouville-type theorems for fractional Hardy-Henon systems
    Li, Kui
    Yu, Meng
    Zhang, Zhitao
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (01):