imMens: Real-time Visual Querying of Big Data

被引:165
|
作者
Liu, Zhicheng [1 ]
Jiang, Biye [2 ]
Heer, Jeffrey [1 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[2] Tsinghua Univ, Dept Comp Sci & Technol, Beijing, Peoples R China
关键词
H; 5; 2 [Information Interfaces]: User Interfaces; VISUALIZATION;
D O I
10.1111/cgf.12129
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Data analysts must make sense of increasingly large data sets, sometimes with billions or more records. We present methods for interactive visualization of big data, following the principle that perceptual and interactive scalability should be limited by the chosen resolution of the visualized data, not the number of records. We first describe a design space of scalable visual summaries that use data reduction methods (such as binned aggregation or sampling) to visualize a variety of data types. We then contribute methods for interactive querying (e.g., brushing & linking) among binned plots through a combination of multivariate data tiles and parallel query processing. We implement our techniques in imMens, a browser-based visual analysis system that uses WebGL for data processing and rendering on the GPU. In benchmarks imMens sustains 50 frames-per-second brushing & linking among dozens of visualizations, with invariant performance on data sizes ranging from thousands to billions of records.
引用
收藏
页码:421 / 430
页数:10
相关论文
共 50 条
  • [1] An incremental approach for real-time Big Data visual analytics
    Garcia, Ignacio
    Casado, Ruben
    Bouchachia, Abdelhamid
    [J]. 2016 IEEE 4TH INTERNATIONAL CONFERENCE ON FUTURE INTERNET OF THINGS AND CLOUD WORKSHOPS (FICLOUDW), 2016, : 177 - 182
  • [2] Real-Time Data ETL Framework for Big Real-Time Data Analysis
    Li, Xiaofang
    Mao, Yingchi
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, 2015, : 1289 - 1294
  • [3] Hashedcubes: Simple, Low Memory, Real-Time Visual Exploration of Big Data
    Pahins, Cicero A. L.
    Stephens, Sean A.
    Scheidegger, Carlos
    Comba, Joao L. D.
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017, 23 (01) : 671 - 680
  • [4] Visual Real-time Data Processing
    Shen Kaixin
    An, Honglei
    Huang Yongshan
    Wei Qing
    Ma HongXu
    [J]. PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 3741 - 3746
  • [5] A survey on data stream, big data and real-time
    Gomes, Eliza H.A.
    Plentz, Patrícia D.M.
    De Rolt, Carlos R.
    Dantas, Mario A.R.
    [J]. International Journal of Networking and Virtual Organisations, 2019, 20 (02): : 143 - 167
  • [6] Real-time stream processing for Big Data
    Wingerath, Wolfram
    Gessert, Felix
    Friedrich, Steffen
    Ritter, Norbert
    [J]. IT-INFORMATION TECHNOLOGY, 2016, 58 (04): : 186 - 194
  • [7] Real-time processing of streaming big data
    Safaei, Ali A.
    [J]. REAL-TIME SYSTEMS, 2017, 53 (01) : 1 - 44
  • [8] Real-time processing of streaming big data
    Ali A. Safaei
    [J]. Real-Time Systems, 2017, 53 : 1 - 44
  • [9] Real-Time Data Stream Partitioning over a Sliding Window in Real-Time Spatial Big Data
    Hamdi, Sana
    Bouazizi, Emna
    Faiz, Sami
    [J]. ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2018, PT I, 2018, 11334 : 75 - 88
  • [10] Database Benchmarking for Supporting Real-Time Interactive Querying of Large Data
    Battle, Leilani
    Eichmann, Philipp
    Angelini, Marco
    Catarci, Tiziana
    Santucci, Giuseppe
    Zheng, Yukun
    Binnig, Carsten
    Fekete, Jean-Daniel
    Moritz, Dominik
    [J]. SIGMOD'20: PROCEEDINGS OF THE 2020 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2020, : 1571 - 1587