From Navier-Stokes to Maxwell via Einstein

被引:48
|
作者
Keeler, Cynthia [1 ]
Manton, Tucker [1 ]
Monga, Nikhil [1 ]
机构
[1] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA
关键词
Classical Theories of Gravity; Gauge-gravity correspondence; Scattering Amplitudes; DOUBLE COPY;
D O I
10.1007/JHEP08(2020)147
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We revisit the cutoff surface formulation of fluid-gravity duality in the context of the classical double copy. The spacetimes in this fluid-gravity duality are algebraically special, with Petrov type II when the spacetime is four dimensional. We find two special classes of fluids whose dual spacetimes exhibit higher algebraic speciality: constant vorticity flows have type D gravity duals, while potential flows map to type N spacetimes. Using the Weyl version of the classical double copy, we construct associated single-copy gauge fields for both cases, finding that constant vorticity fluids map to a solenoid gauge field. Additionally we find the scalar in a potential flow fluid maps to the zeroth copy scalar.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] From Navier-Stokes to Maxwell via Einstein
    Cynthia Keeler
    Tucker Manton
    Nikhil Monga
    Journal of High Energy Physics, 2020
  • [2] From Navier-Stokes to Einstein
    Irene Bredberg
    Cynthia Keeler
    Vyacheslav Lysov
    Andrew Strominger
    Journal of High Energy Physics, 2012
  • [3] From Navier-Stokes to Einstein
    Bredberg, Irene
    Keeler, Cynthia
    Lysov, Vyacheslav
    Strominger, Andrew
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (07):
  • [4] Incompressible Navier-Stokes equation from Einstein-Maxwell and Gauss-Bonnet-Maxwell theories
    Niu, Chao
    Tian, Yu
    Wu, Xiao-Ning
    Ling, Yi
    PHYSICS LETTERS B, 2012, 711 (05) : 411 - 416
  • [5] MODIFIED EINSTEIN AND NAVIER-STOKES EQUATIONS
    Bulyzhenkov, I. E.
    RUSSIAN PHYSICS JOURNAL, 2018, 61 (01) : 68 - 75
  • [6] The Maxwell and Navier-Stokes Equations that Follow from Einstein Equation in a Spacetime Containing a Killing Vector Field
    Rodrigues, Fabio Grangeiro
    Rodrigues, Waldyr A., Jr.
    da Rocha, Roldao
    SIXTH INTERNATIONAL SCHOOL ON FIELD THEORY AND GRAVITATION-2012, 2012, 1483 : 277 - 295
  • [7] The Navier-Stokes equation from Maxwell's Theory of Gases
    Bistafa, Sylvio R.
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2018, 40 (01)
  • [8] NAVIER-STOKES AND STOCHASTIC NAVIER-STOKES EQUATIONS VIA LAGRANGE MULTIPLIERS
    Cruzeiro, Ana Bela
    JOURNAL OF GEOMETRIC MECHANICS, 2019, 11 (04): : 553 - 560
  • [9] Convergence of compressible Navier-Stokes-Maxwell equations to incompressible Navier-Stokes equations
    Yang JianWei
    Wang Shu
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (10) : 2153 - 2162
  • [10] Convergence of compressible Navier-Stokes-Maxwell equations to incompressible Navier-Stokes equations
    JianWei Yang
    Shu Wang
    Science China Mathematics, 2014, 57 : 2153 - 2162