Growth and Characterization of MnAs Nanoclusters Embedded in GaAs Nanowires by Metal-Organic Vapor Phase Epitaxy

被引:11
|
作者
Yatago, Masatoshi [1 ]
Iguchi, Hiroko
Sakita, Shinya
Hara, Shinjiro
机构
[1] Hokkaido Univ, Res Ctr Integrated Quantum Elect, Sapporo, Hokkaido 0608628, Japan
基金
日本科学技术振兴机构;
关键词
MAGNETORESISTANCE; INJECTION; SURFACES;
D O I
10.1143/JJAP.51.02BH01
中图分类号
O59 [应用物理学];
学科分类号
摘要
The authors report on the fabrication of MnAs/GaAs hybrid nanowires by combining selective-area metal-organic vapor phase epitaxy of GaAs nanowires and "endotaxy" of MnAs nanoclusters. MnAs nanoclusters are embedded in the six ridges of hexagonal GaAs nanowires as a result of endotaxy. From the cross-sectional characterizations by transmission electron microscopy, the average width of MnAs nanoclusters with the hexagonal NiAs-type crystal structure and the average depth in GaAs nanowires are estimated to be about 10 and 8 nm, respectively. The magnetic responses detected from the reference samples grown on planar GaAs (111) B layers show that ferromagnetic MnAs nanoclusters are formed. The diameter of nanoclusters grown in GaAs nanowires increases with decreasing growth temperature and/or increasing distance between the GaAs nanowires, while the density of nanoclusters increases with increasing growth temperature. It is found that the diameter and density of nanoclusters are strongly influenced by the gas supplied during the decrease in temperature after the nanocluster growth. (C) 2012 The Japan Society of Applied Physics
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Magnetic properties of hexagonal MnAs nanoclusters formed on GaInAs (111) surfaces by metal-organic vapor phase epitaxy
    Hara, Shinjiroh
    Fukui, Takashi
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) : E833 - E835
  • [2] Metal-organic vapor phase epitaxy of crystallographically oriented MnP magnetic nanoclusters embedded in GaP(001)
    Lambert-Milot, S.
    Lacroix, C.
    Menard, D.
    Masut, R. A.
    Desjardins, P.
    Garcia-Hernandez, M.
    de Andres, A.
    [J]. JOURNAL OF APPLIED PHYSICS, 2008, 104 (08)
  • [3] Growth of BGaAs layers on GaAs substrates by metal-organic vapor-phase epitaxy
    D. A. Pryakhin
    V. M. Danil’tsev
    Yu. N. Drozdov
    M. N. Drozdov
    D. M. Gaponova
    A. V. Murel’
    V. I. Shashkin
    S. Rushworth
    [J]. Semiconductors, 2005, 39 : 11 - 13
  • [4] Growth of BGaAs layers on GaAs substrates by metal-organic vapor-phase epitaxy
    Pryakhin, DA
    Danil'tsev, VM
    Drozdov, YN
    Drozdov, MN
    Gaponova, DM
    Murel', AV
    Shashkin, VI
    Rushworth, S
    [J]. SEMICONDUCTORS, 2005, 39 (01) : 11 - 13
  • [5] Metal-organic vapor phase epitaxy growth and characterization of AlN/GaN heterostructures
    S. M. Hubbard
    D. Pavlidis
    V. Valiaev
    A. Eisenbach
    [J]. Journal of Electronic Materials, 2002, 31 : 395 - 401
  • [6] Metal-organic vapor phase epitaxy growth and characterization of AlN/GaN heterostructures
    Hubbard, SM
    Pavlidis, D
    Valiaev, V
    Eisenbach, A
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2002, 31 (05) : 395 - 401
  • [7] Growth Direction Control of Ferromagnetic MnAs Grown by Selective-Area Metal-Organic Vapor Phase Epitaxy
    Wakatsuki, Toshitomo
    Hara, Shinjiro
    Ito, Shingo
    Kawamura, Daichi
    Fukui, Takashi
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2009, 48 (04)
  • [8] The self-seeded growth of InAsSb nanowires on silicon by metal-organic vapor phase epitaxy
    Du, Wen-Na
    Yang, Xiao-Guang
    Wang, Xiao-Ye
    Pan, Hua-Yong
    Ji, Hai-Ming
    Luo, Shuai
    Yang, Tao
    Wang, Zhan-Guo
    [J]. JOURNAL OF CRYSTAL GROWTH, 2014, 396 : 33 - 37
  • [9] PHOTOASSISTED METAL-ORGANIC VAPOR-PHASE EPITAXY OF ZNTE ON GAAS
    DUMONT, H
    QUHEN, B
    BOUREE, JE
    KUHN, W
    GOROCHOV, O
    [J]. THIN SOLID FILMS, 1994, 241 (1-2) : 370 - 373
  • [10] Interface characterization of GaAs/Ge heterostructure grown by metal-organic vapor-phase epitaxy
    Krupanidhi, SB
    Hudait, MK
    [J]. PROCEEDING OF THE TENTH INTERNATIONAL WORKSHOP ON THE PHYSICS OF SEMICONDUCTOR DEVICES, VOLS I AND II, 2000, 3975 : 171 - 178