A numerically scalable dual-primal substructuring method for the solution of contact problems - part I: the frictionless case

被引:32
|
作者
Avery, P
Rebel, G
Lesoinne, M
Farhat, C
机构
[1] Univ Colorado, Dept Aerosp Engn Sci, Boulder, CO 80309 USA
[2] Univ Colorado, Ctr Aerosp Struct, Boulder, CO 80309 USA
关键词
dual-primal substructuring method; frictionless contact;
D O I
10.1016/j.cma.2004.01.016
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a dual-primal non-linear domain decomposition method with Lagrange multipliers for solving iteratively frictionless contact problems. This method, which is based oil the (FETI)-DP substructuring algorithm, features a nonlinear Krylov-type acceleration scheme. It addresses both cases of restrained and unrestrained bodies. When the bodies in contact behave linearly, it does not perform any Newton-like iteration to solve the non-linear contact problem. We present performance results for several numerical Simulations which Suggest that the proposed method is numerically scalable with respect to both the problem size and the number of subdomains. We also illustrate the parallel scalability of this method on a cluster of Silicon Graphics systems for a three-million degree of freedom static contact problem. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:2403 / 2426
页数:24
相关论文
共 32 条
  • [1] On the convergence of a dual-primal substructuring method
    Jan Mandel
    Radek Tezaur
    Numerische Mathematik, 2001, 88 : 543 - 558
  • [2] On the convergence of a dual-primal substructuring method
    Mandel, J
    Tezaur, R
    NUMERISCHE MATHEMATIK, 2001, 88 (03) : 543 - 558
  • [3] A numerically scalable domain decomposition method for the solution of frictionless contact problems
    Dureisseix, D
    Farhat, C
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2001, 50 (12) : 2643 - 2666
  • [4] A scalable dual-primal domain decomposition method
    Farhat, C
    Lesoinne, M
    Pierson, K
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2000, 7 (7-8) : 687 - 714
  • [5] Primal and dual penalty methods to solution of contact problems
    Vondrák, V
    Dostál, Z
    Dobiás, J
    Pták, S
    ICNAAM 2004: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2004, 2004, : 461 - 464
  • [6] An improved dual-primal domain decomposition method for 3D electromagnetic problems
    Li, Yujia
    Jin, Jian-Ming
    2007 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-12, 2007, : 5421 - 5424
  • [7] FETI-DP: a dual-primal unified FETI method - part I: A faster alternative to the two-level FETI method
    Farhat, C
    Lesoinne, M
    LeTallec, P
    Pierson, K
    Rixen, D
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2001, 50 (07) : 1523 - 1544
  • [8] Lagrange multiplier method for the finite element solution of frictionless contact problems
    Papadopoulos, P
    Solberg, JM
    MATHEMATICAL AND COMPUTER MODELLING, 1998, 28 (4-8) : 373 - 384
  • [9] A dual-primal FETI method for solving a class of fluid-structure interaction problems in the frequency domain
    Li, Jing
    Farhat, Charbel
    Avery, Philip
    Tezaur, Radek
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 89 (04) : 418 - 437
  • [10] Energy-momentum conserving schemes for frictionless dynamic contact problems. Part I: NTS method
    Betsch, Peter
    Hesch, Christian
    IUTAM SYMPOSIUM ON COMPUTATIONAL METHODS IN CONTACT MECHANICS, 2007, 3 : 77 - +