OPTIMIZED SCHWARZ METHODS WITH ROBIN TRANSMISSION CONDITIONS FOR PARABOLIC PROBLEMS

被引:21
|
作者
Qin, Lizhen [1 ]
Xu, Xuejun [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn, Beijing 100864, Peoples R China
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2008年 / 31卷 / 01期
基金
美国国家科学基金会;
关键词
parabolic problem; nonconforming finite elements; nonoverlapping domain decomposition; Robin transmission condition; convergence rate; optimal parameter;
D O I
10.1137/070682149
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, optimized Schwarz methods with Robin transmission conditions are considered for solving the time-dependent linear algebraic systems resulting from finite element approximations for parabolic problems. We use both analysis and numerical experiments to investigate the convergence behavior. Particularly, we check the influence of the time step size on the convergence rate. We get the estimate of the upper bound of convergence rate 1 - O(min{h(1/2) H-1/2, h(1/2) H-3/2 tau(-1)}), where h is the mesh size, H is the size of subdomains, and tau is the time step size. Our numerical results show that the convergence rate of this method is fast. We also search for the optimal parameter lambda by experiments and find the rule of its distribution.
引用
收藏
页码:608 / 623
页数:16
相关论文
共 50 条