INSTRUMENTAL VARIABLES INFERENCE IN A SMALL-DIMENSIONAL VAR MODEL WITH DYNAMIC LATENT FACTORS

被引:1
|
作者
Carlini, Federico [1 ]
Gagliardini, Patrick [2 ]
机构
[1] LUISS Univ Rome, Rome, Italy
[2] Univ Svizzera Italiana, Lugano, Switzerland
基金
瑞士国家科学基金会;
关键词
IMPULSE-RESPONSE ANALYSIS; SYSTEMIC RISK; IDENTIFICATION; TESTS; CONTAGION; RANK; REPRESENTATION; CONNECTEDNESS; VOLATILITY;
D O I
10.1017/S0266466622000536
中图分类号
F [经济];
学科分类号
02 ;
摘要
We study semiparametric inference in a small-dimensional vector autoregressive (VAR) model of order p augmented by unobservable common factors with a dynamic described by a VAR process of order q. This state-space specification is useful to measure separately the direct causality effects and the responses to dynamic common factors. We show that the state-space parameters are identifiable from the autocovariance function of the observed process. We estimate the model by means of a multistep procedure in closed-form, which combines an eigenvalue-eigenvector matrix decomposition and a linear instrumental variable estimation allowing for Hansen-Sargan specification tests. We study the asymptotic and finite-sample properties of the parameter estimators and of rank tests for selecting the number of unobservable factors and VAR orders. In an empirical illustration, we investigate the dynamic common factors and the spillover effects that explain the co-movements among the log daily realized volatilities of four European stock market indices.
引用
收藏
页数:47
相关论文
共 40 条
  • [1] Inference for high-dimensional instrumental variables regression
    Gold, David
    Lederer, Johannes
    Tao, Jing
    JOURNAL OF ECONOMETRICS, 2020, 217 (01) : 79 - 111
  • [2] The derivation of a latent threshold instrumental variables model
    Glickman, ME
    Normand, SLT
    STATISTICA SINICA, 2000, 10 (02) : 517 - 544
  • [3] High-Dimensional Model-Assisted Inference for Local Average Treatment Effects With Instrumental Variables
    Sun, Baoluo
    Tan, Zhiqiang
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 40 (04) : 1732 - 1744
  • [4] Causal inference with latent variables from the Rasch model as outcomes
    Rabbitt, Matthew P.
    MEASUREMENT, 2018, 120 : 193 - 205
  • [5] Latent Variable GIMME Using Model Implied Instrumental Variables (MIIVs)
    Gates, Kathleen M.
    Fisher, Zachary F.
    Bollen, Kenneth A.
    PSYCHOLOGICAL METHODS, 2020, 25 (02) : 227 - 242
  • [6] Dynamic Probabilistic Latent Variable Model with Exogenous Variables for Dynamic Anomaly Detection
    Xu, Bo
    Zhu, Qinqin
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 3945 - 3950
  • [7] Bayesian inference for multidimensional graded response model using Polya-Gamma latent variables
    Fu, Zhihui
    Lu, Meilan
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (16) : 2856 - 2887
  • [8] Instrumental variables estimation of a simple dynamic model of bidding behavior in private value auctions
    Ham, John C.
    Lehrer, Steven F.
    JOURNAL OF THE ECONOMIC SCIENCE ASSOCIATION-JESA, 2020, 6 (02): : 139 - 155
  • [9] Instrumental variables estimation of a simple dynamic model of bidding behavior in private value auctions
    John C. Ham
    Steven F. Lehrer
    Journal of the Economic Science Association, 2020, 6 : 139 - 155
  • [10] Dynamic Model Identification with Uncertain Process Variables using Fuzzy Inference System
    Fontes, Raony M.
    Fontes, Cristiano H.
    Kalid, Ricardo A.
    11TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING, PTS A AND B, 2012, 31 : 955 - 959