For nitrogen-rich wastewater with a low COD/N ratio, the partial nitrification-Anammox process is considered a promising alternative to conventional nitrification-denitrification, saving energy and additional carbon source. In the Anammox reaction, performed under anoxic conditions by autotrophic bacteria, ammonium and nitrite contribute in equimolar amounts to the formation of dinitrogen gas. Anammox bacteria are characterized by low biomass yield because of their autotrophic growth mode and their high maintenance requirement due to their slow growth rate (doubling time of 10-12 days). In addition, nitrite is a substrate for Anammox on one hand and an inhibitor of Anammox microorganisms at some concentrations on the other hand. Next, inorganic carbon limitation is the limiting factor in the growth of nitrifiers and Anammox bacteria. These are the reasons that one-stage reactors are extremely difficult to start-up. The goal of this study was to determine the effect of bicarbonate addition on the changes in nitrogen forms in the one-stage reactor, biofilm composition and overall reactor performance during the adaptation of non-Anammox biomass to nitrogen-rich wastewater. In this study, a one-stage biofilm batch reactor treated the digester supernatant from the full-scale municipal wastewater treatment plant. In the supernatant, the average concentrations of pollutants were as follows: 320 +/- 52 mg COD/L, 413 +/- 78 mg TN/L, 328 +/- 46 mg NH4-N/L and 97 +/- 19 mg TP/L. Aerobic granular sludge from the full-scale municipal wastewater treatment plant operated with simultaneous nitrification and denitrification was used as inoculum. The operational parameters of the reactor were: working volume 3 L, 8-hour cycle, volumetric exchange ratio 50%/cycle. In one-stage reactors, nitrite-oxidizing bacteria (NOB) must be selectively pressured to decrease their activity. Therefore, in this reactor, low dissolved oxygen, about 0.5 mg/L, a pH of about 8.0, and a high temperature, about 35 degrees C, were maintained. Apart from determining changes in nitrogen profile, fluorescence in situ hybridization technique indicating the changes in the biofilm composition was used as an indicator of adaptation of the microorganisms to high influent nitrogen concentrations. With the bicarbonate/TN ratio in the influent of about 3.5, stable reactor performance was obtained with the final ammonium concentration in the effluent below 10 mg N-NH4/L. Nitrate was the predominant form of nitrogen in the effluent. In this period, the abundance proportion between Anammox bacteria, ammonium-oxidizing bacteria (AOB) and NOB dynamically changed in the biomass. This part of biomass that was suspended in the reactor was characterized by good settling abilities, with the sludge volume index below 50 mL/g MLSS.