Biochar significantly alters rhizobacterial communities and reduces Cd concentration in rice grains grown on Cd-contaminated soils

被引:83
|
作者
Wang, Runze [1 ]
Wei, Shuai [1 ]
Jia, Peihan [1 ]
Liu, Ting [1 ]
Hou, Dandi [2 ]
Xie, Ruohan [1 ]
Lin, Zhi [1 ]
Ge, Jun [1 ]
Qiao, Yabei [1 ]
Chang, Xiaoyan [1 ]
Lu, Lingli [1 ]
Tian, Shengke [1 ]
机构
[1] Zhejiang Univ, Coll Environm & Resource Sci, MOE Key Lab Environm Remediat & Ecol Hlth, Hangzhou 310058, Zhejiang, Peoples R China
[2] Ningbo Univ, Sch Marine Sci, Ningbo 315211, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Biochar; Cadmium; Rhizosphere; Bacterial community; Rice cultivar; DISSOLVED ORGANIC-MATTER; CARBON SEQUESTRATION; BACTERIAL COMMUNITY; AQUEOUS-SOLUTION; CADMIUM REMOVAL; HEAVY-METALS; TAINTED RICE; HEALTH-RISK; AMENDMENT; ACCUMULATION;
D O I
10.1016/j.scitotenv.2019.04.133
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Cadmium (Cd) contamination poses a serious problem in paddy soils. Biochar is frequently reported to deactivate Cd in soils and reduce Cd accumulation in rice plants, but few studies have addressed whether and how biochar affected the microbial communities in rice rhizosphere, which was an important factor determining the metal bioavailability and plant growth. In this study, biochar was pyrolyzed from bamboo (Phyllostachys heterocycle) chips at 350 degrees C. By using ICP-MS analysis and 16S rRNA gene sequencing, the impact of the biochar on Cd uptake by rice and on rhizospheric bacterial communities was investigated in both high-accumulating (HA) and low-accumulating (LA) rice cultivars grown in soils artificially contaminated with different Cd levels. Applied biochar significantly reduced Cd contents in rice plants of both cultivars, with substantially lower grain Cd contents for LA grown in highly contaminated soil. Soil pH was slightly increased by the applied biochar. Cd bioavailability was somehow reduced in soils, but not as significant as the reduction of Cd contents in rice plants. More interestingly, biochar application significantly altered the rhizobacterial community: it stimulated growth-promoting bacteria, such as Kaistobacter, Sphingobium (order Sphingomonadales), and Rhizobiaceae (order Rhizobiales); improved natural barrier formation and the transformation of metal mobilization around the rhizosphere mediated by, e.g., Rhodocyclaceae (class Betaproteobacteria) and Geobacter (class Deltaproteobacteria); and enhanced colonization of the LA rhizosphere possibly by taxa involved in Cd immobilization (Desulfovibrionales and Desulfobacterales). These results indicate that biochar application significantly reduces Cd uptake and accumulation by altering the rhizosphere bacterial community in rice grown on Cd-contaminated soils. The baseline data generated in this study provide insights that pave the way toward safer rice production. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:627 / 638
页数:12
相关论文
共 50 条
  • [1] Rice husk biochar reduces Cd availability by affecting microbial community activity and structure in Cd-contaminated soils
    Meili Xu
    Rongbo Xiao
    Chuang Mei
    Jun Chen
    Qiqi Huang
    Fei Huang
    Mengting He
    Journal of Soils and Sediments, 2024, 24 : 1764 - 1776
  • [2] Rice husk biochar reduces Cd availability by affecting microbial community activity and structure in Cd-contaminated soils
    Xu, Meili
    Xiao, Rongbo
    Mei, Chuang
    Chen, Jun
    Huang, Qiqi
    Huang, Fei
    He, Mengting
    JOURNAL OF SOILS AND SEDIMENTS, 2024, 24 (4) : 1764 - 1776
  • [3] Effect of rice straw biochar on three different levels of Cd-contaminated soils: Cd availability, soil properties, and microbial communities
    Xu, Meili
    Dai, Weijie
    Zhao, Zilin
    Zheng, Jiatong
    Huang, Fei
    Mei, Chuang
    Huang, Shuting
    Liu, Chufan
    Wang, Peng
    Xiao, Rongbo
    Chemosphere, 2022, 301
  • [4] Effect of rice straw biochar on three different levels of Cd-contaminated soils: Cd availability, soil properties, and microbial communities
    Xu, Meili
    Dai, Weijie
    Zhao, Zilin
    Zheng, Jiatong
    Huang, Fei
    Mei, Chuang
    Huang, Shuting
    Liu, Chufan
    Wang, Peng
    Xiao, Rongbo
    CHEMOSPHERE, 2022, 301
  • [5] Selenium application alters soil cadmium bioavailability and reduces its accumulation in rice grown in Cd-contaminated soil
    Huang, Qingqing
    Xu, Yingming
    Liu, Yiyun
    Qin, Xu
    Huang, Rong
    Liang, Xuefeng
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2018, 25 (31) : 31175 - 31182
  • [6] Selenium application alters soil cadmium bioavailability and reduces its accumulation in rice grown in Cd-contaminated soil
    Qingqing Huang
    Yingming Xu
    Yiyun Liu
    Xu Qin
    Rong Huang
    Xuefeng Liang
    Environmental Science and Pollution Research, 2018, 25 : 31175 - 31182
  • [7] Effect of biochars and microorganisms on cadmium accumulation in rice grains grown in Cd-contaminated soil
    Suksabye, Parinda
    Pimthong, Apinya
    Dhurakit, Prapai
    Mekvichitsaeng, Phenjun
    Thiravetyan, Paitip
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2016, 23 (02) : 962 - 973
  • [8] Effect of biochars and microorganisms on cadmium accumulation in rice grains grown in Cd-contaminated soil
    Parinda Suksabye
    Apinya Pimthong
    Prapai Dhurakit
    Phenjun Mekvichitsaeng
    Paitip Thiravetyan
    Environmental Science and Pollution Research, 2016, 23 : 962 - 973
  • [9] Effects of elevated CO2 on the Cd uptake by rice in Cd-contaminated paddy soils
    Yang, Xiong
    Wang, Dongming
    Tao, Ye
    Shen, Min
    Wei, Wei
    Cai, Chuang
    Ding, Changfeng
    Li, Jiuyu
    Song, Lian
    Yin, Bin
    Zhu, Chunwu
    JOURNAL OF HAZARDOUS MATERIALS, 2023, 442
  • [10] Biochar is an effective amendment to remediate Cd-contaminated soils—a meta-analysis
    Yanmei Hu
    Peng Zhang
    Ming Yang
    Yuqing Liu
    Xing Zhang
    Shanshan Feng
    Dawei Guo
    Xiuli Dang
    Journal of Soils and Sediments, 2020, 20 : 3884 - 3895