HYPERGEOMETRIC BERNOULLI POLYNOMIALS AND APPELL SEQUENCES

被引:39
|
作者
Hassen, Abdul [1 ]
Nguyen, Hieu D. [1 ]
机构
[1] Rowan Univ, Dept Math, Glassboro, NJ 08028 USA
关键词
Bernoulli polynomials; Appell sequences; confluent hypergeometric series;
D O I
10.1142/S1793042108001754
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There are two analytic approaches to Bernoulli polynomials B-n(x): either by way of the generating function ze(xz)/(e(z)-1) = Sigma B-n(x)z(n)/n! or as an Appell sequence with zero mean. In this article, we discuss a generalization of Bernoulli polynomials defined by the generating function z(N)e(xz)/(e(z) - TN-1(z)), where T-N(z) denotes the Nth Maclaurin polynomial of e(z), and establish an equivalent definition in terms of Appell sequences with zero moments in complete analogy to their classical counterpart. The zero-moment condition is further shown to generalize to Bernoulli polynomials generated by the confluent hypergeometric series.
引用
下载
收藏
页码:767 / 774
页数:8
相关论文
共 50 条
  • [1] On Appell sequences of polynomials of Bernoulli and Euler type
    Tempesta, Piergiulio
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (02) : 1295 - 1310
  • [2] Multidimensional extensions of the Bernoulli and Appell polynomials
    Bretti, G
    Ricci, PE
    TAIWANESE JOURNAL OF MATHEMATICS, 2004, 8 (03): : 415 - 428
  • [3] On hypergeometric Bernoulli numbers and polynomials
    Hu, S.
    Kim, M. -S.
    ACTA MATHEMATICA HUNGARICA, 2018, 154 (01) : 134 - 146
  • [4] On hypergeometric Bernoulli numbers and polynomials
    S. Hu
    M.-S. Kim
    Acta Mathematica Hungarica, 2018, 154 : 134 - 146
  • [5] SOME PROPERTIES OF GENERALIZED HYPERGEOMETRIC APPELL POLYNOMIALS
    Bedratyuk, L.
    Luno, N.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2020, 12 (01) : 129 - 137
  • [6] Discrete Appell-Dunkl sequences and Bernoulli-Dunkl polynomials of the second kind
    Extremiana Aldana, Jose Ignacio
    Labarga, Edgar
    Minguez Ceniceros, Judit
    Luis Varona, Juan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 507 (02)
  • [7] Hypergeometric degenerate Bernoulli polynomials and numbers
    Komatsu, Takao
    ARS MATHEMATICA CONTEMPORANEA, 2020, 18 (01) : 163 - 177
  • [8] A Note on the Laguerre-Type Appell and Hypergeometric Polynomials
    Ricci, Paolo Emilio
    Srivastava, Rekha
    MATHEMATICS, 2022, 10 (11)
  • [9] Adjoint Appell-Euler and First Kind Appell-Bernoulli Polynomials
    Natalini, Pierpaolo
    Ricci, Paolo E.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2019, 14 (02): : 1112 - 1122
  • [10] New convolution identities for hypergeometric Bernoulli polynomials
    Nguyen, Hieu D.
    Cheong, Long G.
    JOURNAL OF NUMBER THEORY, 2014, 137 : 201 - 221