An input-output hidden Markov model for tree transductions

被引:11
|
作者
Bacciu, Davide [1 ]
Micheli, Alessio [1 ]
Sperduti, Alessandro [2 ]
机构
[1] Univ Pisa, Dipartimento Informat, I-56100 Pisa, Italy
[2] Univ Padua, Dipartimento Matemat, I-35100 Padua, Italy
关键词
Bottom-up hidden tree Markov model; Input-driven generative model; Learning tree transductions; Structured data processing; GENERAL FRAMEWORK; STRUCTURED DATA; EDIT DISTANCE;
D O I
10.1016/j.neucom.2012.12.044
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper introduces an input-driven generative model for tree-structured data that extends the bottom-up hidden tree Markov model to non-homogeneous state transition and emission probabilities. We show how the proposed input-driven approach can be used to realize different types of structured transductions between trees. A thorough experimental analysis is proposed to investigate the advantage of introducing an input-driven dynamics in structured-data processing. The results of this analysis suggest that input-driven models can capture more discriminative structural information than homogeneous approaches in computational learning tasks, including document classification and more general substructure categorization. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:34 / 46
页数:13
相关论文
共 50 条
  • [1] A New Language and Input-Output Hidden Markov Model for Automated Audit Inquiry
    Kachroo, Pushkin
    Saiewitz, Aaron
    Raschke, Robyn
    Agarwal, Shaurya
    Huang, Jiheng
    IEEE INTELLIGENT SYSTEMS, 2020, 35 (06) : 39 - 49
  • [2] Input-Output Hidden Markov Model for System Health Diagnosis Under Missing Data
    Shahin, Kamrul Islam
    Simon, Christophe
    Weber, Philippe
    Theilliol, Didier
    2020 28TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2020, : 556 - 561
  • [3] Identifiability of discrete input-output hidden Markov models with external signals
    David, Etienne
    Bellot, Jean
    Le Corff, Sylvain
    Lehericy, Luc
    STATISTICS AND COMPUTING, 2024, 34 (01)
  • [4] Personalized Input-Output Hidden Markov Models for Disease Progression Modeling
    Severson, Kristen A.
    Chahine, Lana M.
    Smolensky, Luba
    Ng, Kenney
    Hu, Jianying
    Ghosh, Soumya
    MACHINE LEARNING FOR HEALTHCARE CONFERENCE, VOL 126, 2020, 126 : 309 - 329
  • [5] Mixture of Input-Output Hidden Markov Models for Heterogeneous Disease Progression Modeling
    Ceritli, Taha
    Creagh, Andrew P.
    Clifton, David A.
    WORKSHOP ON HEALTHCARE AI AND COVID-19, VOL 184, 2022, 184 : 41 - 53
  • [6] Generalized Input-Output Hidden-Markov-Models for Supervising Industrial Processes
    Chasparis, Georgios C.
    Luftensteiner, Sabrina
    Mayr, Michael
    3RD INTERNATIONAL CONFERENCE ON INDUSTRY 4.0 AND SMART MANUFACTURING, 2022, 200 : 1402 - 1411
  • [7] Mixture of Input-Output Hidden Markov Models for Heterogeneous Disease Progression Modeling
    Ceritli, Taha
    Creagh, Andrew P.
    Clifton, David A.
    2022 IEEE-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS (BHI) JOINTLY ORGANISED WITH THE IEEE-EMBS INTERNATIONAL CONFERENCE ON WEARABLE AND IMPLANTABLE BODY SENSOR NETWORKS (BSN'22), 2022,
  • [8] Learning dynamic audio-visual mapping with input-output hidden Markov models
    Li, Yan
    Shum, Heung-Yeung
    IEEE TRANSACTIONS ON MULTIMEDIA, 2006, 8 (03) : 542 - 549
  • [9] LINEAR DYNAMICS HIDDEN BY INPUT-OUTPUT LINEARIZATION
    HUNT, LR
    VERMA, MS
    INTERNATIONAL JOURNAL OF CONTROL, 1991, 53 (03) : 731 - 740
  • [10] Interpretable Input-Output Hidden Markov Model-Based Deep Reinforcement Learning for the Predictive Maintenance of Turbofan Engines
    Abbas, Ammar N.
    Chasparis, Georgios C.
    Kelleher, John D.
    BIG DATA ANALYTICS AND KNOWLEDGE DISCOVERY, DAWAK 2022, 2022, 13428 : 133 - 148