Annotating temporal information in clinical narratives

被引:42
|
作者
Sun, Weiyi [1 ]
Rumshisky, Anna [2 ]
Uzuner, Ozlem [3 ]
机构
[1] SUNY Albany, Dept Informat, Albany, NY 12222 USA
[2] Univ Massachusetts, Dept Comp Sci, Lowell, MA 01854 USA
[3] SUNY Albany, Dept Informat Studies, Albany, NY 12222 USA
基金
美国国家卫生研究院;
关键词
Natural Language Processing; Temporal Reasoning; Medical Informatics; Corpus Building; Annotation;
D O I
10.1016/j.jbi.2013.07.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Temporal information in clinical narratives plays an important role in patients' diagnosis, treatment and prognosis. In order to represent narrative information accurately, medical natural language processing (MLP) systems need to correctly identify and interpret temporal information. To promote research in this area, the Informatics for Integrating Biology and the Bedside (i2b2) project developed a temporally annotated corpus of clinical narratives. This corpus contains 310 de-identified discharge summaries, with annotations of clinical events, temporal expressions and temporal relations. This paper describes the process followed for the development of this corpus and discusses annotation guideline development, annotation methodology, and corpus quality. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:S5 / S12
页数:8
相关论文
共 50 条
  • [41] CLINICAL TELEMETRY OF EMG AND TEMPORAL INFORMATION DURING GAIT
    QUANBURY, AO
    FOLEY, CD
    WINTER, DA
    LETTS, RM
    STEINKE, T
    BIOTELEMETRY, 1976, 3 (01) : 35 - 36
  • [42] Using openEHR Archetypes for Automated Extraction of Numerical Information from Clinical Narratives
    Zubke, Maximilian
    Bott, Oliver J.
    Marschollek, Michael
    GERMAN MEDICAL DATA SCIENCES: SHAPING CHANGE - CREATIVE SOLUTIONS FOR INNOVATIVE MEDICINE (GMDS 2019), 2019, 267 : 156 - 163
  • [43] Data Science and Natural Language Processing to Extract Information from Clinical Narratives
    Vydiswaran, V. G. Vinod
    Zhao, Xinyan
    Yu, Deahan
    CODS-COMAD 2021: PROCEEDINGS OF THE 3RD ACM INDIA JOINT INTERNATIONAL CONFERENCE ON DATA SCIENCE & MANAGEMENT OF DATA (8TH ACM IKDD CODS & 26TH COMAD), 2021, : 441 - 442
  • [44] Combining rules and machine learning for extraction of temporal expressions and events from clinical narratives
    Kovacevic, Aleksandar
    Dehghan, Azad
    Filannino, Michele
    Keane, John A.
    Nenadic, Goran
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2013, 20 (05) : 859 - 866
  • [45] Annotating novel genes by integrating synthetic lethals and genomic information
    Schoener, Daniel
    Kalisch, Markus
    Leisner, Christian
    Meier, Lukas
    Sohrmann, Marc
    Faty, Mahamadou
    Barral, Yves
    Peter, Matthias
    Gruissem, Wilhelm
    Buehlmann, Peter
    BMC SYSTEMS BIOLOGY, 2008, 2
  • [46] Annotating Event Mentions in Text with Modality, Focus, and Source Information
    Matsuyoshi, Suguru
    Eguchi, Megumi
    Sao, Chitose
    Murakami, Koji
    Inui, Kentaro
    Matsumoto, Yuji
    LREC 2010 - SEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2010, : 1456 - 1463
  • [47] Annotating and detecting phenotypic information for chronic obstructive pulmonary disease
    Ju, Meizhi
    Short, Andrea D.
    Thompson, Paul
    Bakerly, Nawar Diar
    Gkoutos, Georgios, V
    Tsaprouni, Loukia
    Ananiadou, Sophia
    JAMIA OPEN, 2019, 2 (02) : 261 - 271
  • [48] Annotating Clinical Events in Text Snippets for Phenotype Detection
    Klassen, Prescott
    Xia, Fei
    Vanderwende, Lucy
    Yetisgen, Meliha
    LREC 2014 - NINTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2014, : 2753 - 2757
  • [49] Detecting temporal expressions in medical narratives
    Reeves, Ruth M.
    Ong, Ferdo R.
    Matheny, Michael E.
    Denny, Joshua C.
    Aronsky, Dominik
    Gobbel, Glenn T.
    Montella, Diane
    Speroff, Theodore
    Brown, Steven H.
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2013, 82 (02) : 118 - 127
  • [50] Annotating German Clinical Documents for De-Identification
    Kolditz, Tobias
    Lohr, Christina
    Hellrich, Johannes
    Modersohn, Luise
    Betz, Boris
    Kiehntopf, Michael
    Hahn, Udo
    MEDINFO 2019: HEALTH AND WELLBEING E-NETWORKS FOR ALL, 2019, 264 : 203 - 207