Macrobenthos habitat potential mapping using GIS-based artificial neural network models
被引:21
|
作者:
Lee, Saro
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Geosci & Mineral Resources KIGAM, Geosci Informat Ctr, Taejon 305350, South KoreaKorea Inst Geosci & Mineral Resources KIGAM, Geosci Informat Ctr, Taejon 305350, South Korea
Lee, Saro
[1
]
Park, Inhye
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Geosci & Mineral Resources KIGAM, Geosci Informat Ctr, Taejon 305350, South KoreaKorea Inst Geosci & Mineral Resources KIGAM, Geosci Informat Ctr, Taejon 305350, South Korea
Park, Inhye
[1
]
论文数: 引用数:
h-index:
机构:
Koo, Bon Joo
[2
]
Ryu, Joo-Hyung
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Ocean Sci & Technol, Korea Ocean Satellite Ctr, Ansan 426744, South KoreaKorea Inst Geosci & Mineral Resources KIGAM, Geosci Informat Ctr, Taejon 305350, South Korea
Ryu, Joo-Hyung
[3
]
Choi, Jong-Kuk
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Ocean Sci & Technol, Korea Ocean Satellite Ctr, Ansan 426744, South KoreaKorea Inst Geosci & Mineral Resources KIGAM, Geosci Informat Ctr, Taejon 305350, South Korea
Choi, Jong-Kuk
[3
]
Woo, Han Jun
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Ocean Sci & Technol, Maritime Secur Res Ctr, Ansan 426744, South KoreaKorea Inst Geosci & Mineral Resources KIGAM, Geosci Informat Ctr, Taejon 305350, South Korea
Woo, Han Jun
[4
]
机构:
[1] Korea Inst Geosci & Mineral Resources KIGAM, Geosci Informat Ctr, Taejon 305350, South Korea
[2] Korea Inst Ocean Sci & Technol, Marine Ecosyst Res Div, Ansan 426744, South Korea
[3] Korea Inst Ocean Sci & Technol, Korea Ocean Satellite Ctr, Ansan 426744, South Korea
[4] Korea Inst Ocean Sci & Technol, Maritime Secur Res Ctr, Ansan 426744, South Korea
This paper proposes and tests a method of producing macrobenthos habitat potential maps in Hwangdo tidal flat, Korea based on an artificial neural network. Samples of macrobenthos were collected during field work, and eight control factors were compiled as a spatial database from remotely sensed data and GIS analysis. The macrobenthos habitat potential maps were produced using an artificial neural network model. Macrobenthos habitat potential maps were made for Macrophthalmus dilatatus, Cerithideopsilla cingulata, and Armandia lanceolata. The maps were validated by compared with the surveyed habitat locations. A strong correlation between the potential maps and species locations was revealed. The validation result showed average accuracies of 74.9%, 78.32%, and 73.27% for M. dilatatus, C. cingulata, and A. lanceolata, respectively. A GIS-based artificial neural network model combined with remote sensing techniques is an effective tool for mapping the areas of macrobenthos habitat potential in tidal flats. (c) 2012 Published by Elsevier Ltd.
机构:
Korea Ocean Res & Dev Inst, Korea Ocean Satellite Ctr, Ansan 426744, Gyeonggi, South KoreaKorea Ocean Res & Dev Inst, Korea Ocean Satellite Ctr, Ansan 426744, Gyeonggi, South Korea
Choi, Jong-Kuk
Oh, Hyun-Joo
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Geosci & Mineral Resources KIGAM, Geosci Informat Ctr, Taejon 305350, South KoreaKorea Ocean Res & Dev Inst, Korea Ocean Satellite Ctr, Ansan 426744, Gyeonggi, South Korea
Oh, Hyun-Joo
Koo, Bon Joo
论文数: 0引用数: 0
h-index: 0
机构:Korea Ocean Res & Dev Inst, Korea Ocean Satellite Ctr, Ansan 426744, Gyeonggi, South Korea
Koo, Bon Joo
Lee, Saro
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Geosci & Mineral Resources KIGAM, Geosci Informat Ctr, Taejon 305350, South KoreaKorea Ocean Res & Dev Inst, Korea Ocean Satellite Ctr, Ansan 426744, Gyeonggi, South Korea
Lee, Saro
Ryu, Joo-Hyung
论文数: 0引用数: 0
h-index: 0
机构:
Korea Ocean Res & Dev Inst, Korea Ocean Satellite Ctr, Ansan 426744, Gyeonggi, South KoreaKorea Ocean Res & Dev Inst, Korea Ocean Satellite Ctr, Ansan 426744, Gyeonggi, South Korea