Quasi-Periodic Time Series Clustering for Human Activity Recognition

被引:1
|
作者
Grabovoy, A., V [1 ]
Strijov, V. V. [1 ]
机构
[1] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Oblast, Russia
基金
俄罗斯基础研究基金会;
关键词
time series; clustering; segmentation; recognition of physical activity; principal component analysis; SENSORS;
D O I
10.1134/S1995080220030075
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper analyses the periodic signals in the time series to recognize human activity by using a mobile accelerometer. Each point in the timeline corresponds to a segment of historical time series. This segments form a phase trajectory in phase space of human activity. The principal components of segments of the phase trajectory are treated as feature descriptions at the point in the timeline. The paper introduces a new distance function between the points in new feature space. To reval changes of types of the human activity the paper proposes an algorithm. This algorithm clusters points of the timeline by using a pairwise distances matrix. The algorithm was tested on synthetic and real data. This real data were obtained from a mobile accelerometer.
引用
收藏
页码:333 / 339
页数:7
相关论文
共 50 条
  • [1] Quasi-Periodic Time Series Clustering for Human Activity Recognition
    A. V. Grabovoy
    V. V. Strijov
    Lobachevskii Journal of Mathematics, 2020, 41 : 333 - 339
  • [2] Detection of Quasi-Periodic Pulsations in Solar EUV Time Series
    Dominique, M.
    Zhukov, A. N.
    Dolla, L.
    Inglis, A.
    Lapenta, G.
    SOLAR PHYSICS, 2018, 293 (04)
  • [3] TIME-SERIES RATE OF CONVERGENCE TO QUASI-PERIODIC OSCILLATIONS
    Bespalov, A. V.
    Vilkova, E. V.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2014, 5 (03): : 354 - 362
  • [4] Detection of Quasi-Periodic Pulsations in Solar EUV Time Series
    M. Dominique
    A. N. Zhukov
    L. Dolla
    A. Inglis
    G. Lapenta
    Solar Physics, 2018, 293
  • [5] POPULATION-MODEL WITH QUASI-PERIODIC CLUSTERING
    BEBIE, H
    MARCHAND, JP
    PHYSICA A, 1988, 151 (2-3): : 281 - 292
  • [6] Robust Group Anomaly Detection for Quasi-Periodic Network Time Series
    Yang, Kai
    Dou, Shaoyu
    Luo, Pan
    Wang, Xin
    Poor, H. Vincent
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 9 (04): : 2833 - 2845
  • [7] Mathematical Methods for Investigation of Quasi-Periodic Time Series of Atmosphere Parameters
    Alexey I. Chulichkov
    Valentin S. Aleshnovskii
    Vitaliy K. Avilov
    Varvara A. Gazaryan
    Julia A. Kurbatova
    Dmitry Tarbaev
    Natalia Shapkina
    Sergey N. Kulichkov
    Pure and Applied Geophysics, 2022, 179 : 4627 - 4637
  • [8] Detection of Astronomical Quasi-Periodic Oscillation in Unevenly Discrete Time Series
    Li, Xiaopan
    Yang, Haiyan
    Yang, Cheng
    2018 INTERNATIONAL SYMPOSIUM ON MECHANICS, STRUCTURES AND MATERIALS SCIENCE (MSMS 2018), 2018, 1995
  • [9] Analysis of MODIS NDVI time series using quasi-periodic components
    Garcia, Miguel A.
    Rodriguez, Francisco
    FIRST INTERNATIONAL CONFERENCE ON REMOTE SENSING AND GEOINFORMATION OF THE ENVIRONMENT (RSCY2013), 2013, 8795
  • [10] Mathematical Methods for Investigation of Quasi-Periodic Time Series of Atmosphere Parameters
    Chulichkov, Alexey, I
    Aleshnovskii, Valentin S.
    Avilov, Vitaliy K.
    Gazaryan, Varvara A.
    Kurbatova, Julia A.
    Tarbaev, Dmitry
    Shapkina, Natalia
    Kulichkov, Sergey N.
    PURE AND APPLIED GEOPHYSICS, 2022, 179 (12) : 4627 - 4637