Generalized Gibbs ensembles for time-dependent processes

被引:13
|
作者
Chomaz, P
Gulminelli, F
Juillet, O
机构
[1] GANIL, DSM CEA, IN2P3, CNRS, F-14076 Caen, France
[2] LPC Caen, IN2P3, CNRS, F-14050 Caen, France
[3] Univ Caen, F-14050 Caen, France
关键词
information theory; non-equilibrium; flows;
D O I
10.1016/j.aop.2005.05.005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An information theory description of finite systems explicitly evolving in time is presented for classical as well as quantum mechanics. We impose a variational principle on the Shannon entropy at a given time while the constraints are set at a former time. The resulting density matrix deviates from the Boltzmann kernel and contains explicit time odd components which can be interpreted as collective flows. Applications include quantum Brownian motion, linear response theory, out of equilibrium situations for which the relevant information is collected within different time scales before entropy saturation, and the dynamics of the expansion. (c) 2005 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:135 / 163
页数:29
相关论文
共 50 条
  • [1] Time-dependent generalized Gibbs ensembles in open quantum systems
    Lange, Florian
    Lenarcic, Zala
    Rosch, Achim
    PHYSICAL REVIEW B, 2018, 97 (16)
  • [2] THE GENERALIZED WEYL CORRESPONDENCE AND TIME-DEPENDENT STOCHASTIC-PROCESSES
    GADELLA, M
    NIETO, LM
    NORIEGA, JM
    SANTOS, E
    JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (12) : 2961 - 2972
  • [3] A GENERALIZED TIME-DEPENDENT PSEUDOPOTENTIAL
    DATTA, SN
    PRIYADARSHY, S
    CHEMICAL PHYSICS LETTERS, 1987, 135 (1-2) : 147 - 148
  • [4] Dynamical clustering in oscillator ensembles with time-dependent interactions
    Zanette, DH
    Mikhailov, AS
    EUROPHYSICS LETTERS, 2004, 65 (04): : 465 - 471
  • [5] HOHENBERG-KOHN THEOREM FOR TIME-DEPENDENT ENSEMBLES
    LI, TC
    TONG, PQ
    PHYSICAL REVIEW A, 1985, 31 (03): : 1950 - 1951
  • [6] Generalized Gibbs Ensembles of the Classical Toda Chain
    Herbert Spohn
    Journal of Statistical Physics, 2020, 180 : 4 - 22
  • [7] Generalized Gibbs Ensembles in Discrete Quantum Gravity
    Chirco, Goffredo
    Kotecha, Isha
    GEOMETRIC SCIENCE OF INFORMATION, 2019, 11712 : 638 - 646
  • [8] Generalized Gibbs Ensembles of the Classical Toda Chain
    Spohn, Herbert
    JOURNAL OF STATISTICAL PHYSICS, 2020, 180 (1-6) : 4 - 22
  • [9] Complete Generalized Gibbs Ensembles in an Interacting Theory
    Ilievski, E.
    De Nardis, J.
    Wouters, B.
    Caux, J. -S.
    Essler, F. H. L.
    Prosen, T.
    PHYSICAL REVIEW LETTERS, 2015, 115 (15)
  • [10] Generalized Gibbs ensembles for quantum field theories
    Essler, F. H. L.
    Mussardo, G.
    Panfil, M.
    PHYSICAL REVIEW A, 2015, 91 (05):