Phonon-based scalable platform for chip-scale quantum computing

被引:11
|
作者
Reinke, Charles M. [1 ]
El-Kady, Ihab [1 ,2 ]
机构
[1] Sandia Natl Labs, Dept Appl Photon Microsyst, POB 8500 MS 1082, Albuquerque, NM 87185 USA
[2] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA
来源
AIP ADVANCES | 2016年 / 6卷 / 12期
关键词
RESONATORS;
D O I
10.1063/1.4972568
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We present a scalable phonon-based quantum computer on a phononic crystal platform. Practical schemes involve selective placement of a single acceptor atom in the peak of the strain field in a high-Q phononic crystal cavity that enables coupling of the phonon modes to the energy levels of the atom. We show theoretical optimization of the cavity design and coupling waveguide, along with estimated performance figures of the coupled system. A qubit can be created by entangling a phonon at the resonance frequency of the cavity with the atom states. Qubits based on this half-sound, half-matter quasi-particle, called a phoniton, may outcompete other quantum architectures in terms of combined emission rate, coherence lifetime, and fabrication demands. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Phonon-based scalable quantum computing and sensing (Presentation Video)
    El-Kady, Ihab
    SMART SENSOR PHENOMENA, TECHNOLOGY, NETWORKS, AND SYSTEMS INTEGRATION 2015, 2015, 9436
  • [2] Laser cooling in a chip-scale platform
    McGilligan, J. P.
    Moore, K. R.
    Dellis, A.
    Martinez, G. D.
    de Clercq, E.
    Griffin, P. F.
    Arnold, A. S.
    Riis, E.
    Boudot, R.
    Kitching, J.
    APPLIED PHYSICS LETTERS, 2020, 117 (05)
  • [3] A scalable silicon photonic chip-scale optical switch for high performance computing systems
    Yu, Runxiang
    Cheung, Stanley
    Li, Yuliang
    Okamoto, Katsunari
    Proietti, Roberto
    Yin, Yawei
    Yoo, S. J. B.
    OPTICS EXPRESS, 2013, 21 (26): : 32655 - 32667
  • [4] Chip-scale Photonic Interconnects for Reconfigurable Computing
    Sharkawy, Ahmed
    Ebil, Ozgenc
    Zablocki, Mathew
    Shi, Shouyuan
    Prather, Dennis W.
    PHOTONIC AND PHONONIC CRYSTAL MATERIALS AND DEVICES X, 2010, 7609
  • [5] Chip-Scale Multiple Quantum Well Based Optical Interconnects
    Nair, Rohit
    Gu, Tian
    Teitelbaum, Michael E.
    Goossen, Keith W.
    Kiamilev, Fouad
    Haney, Michael W.
    2011 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2011,
  • [6] Error Probability Derivation in a Phonon-based Quantum Channel
    Loscri, Valeria
    Vegni, Anna Maria
    2018 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2018,
  • [7] Advances in Chip-Scale Quantum Photonic Technologies
    Lu, Liangliang
    Zheng, Xiaodong
    Lu, Yanqing
    Zhu, Shining
    Ma, Xiao-Song
    ADVANCED QUANTUM TECHNOLOGIES, 2021, 4 (12)
  • [8] Chip-scale nonlinear photonics for quantum light generation
    Moody, Galan
    Chang, Lin
    Steiner, Trevor J.
    Bowers, John E.
    AVS QUANTUM SCIENCE, 2020, 2 (04):
  • [9] Chip-scale optical vortex lattice generator on a silicon platform
    Du, Jing
    Wang, Jian
    OPTICS LETTERS, 2017, 42 (23) : 5054 - 5057
  • [10] Magnetoresistive sensors for biorecognition: A novel chip-scale diagnostic platform
    Granger, Michael C.
    Williams, Jennifer A.
    Millen, Rachel L.
    Nordling, John E.
    Tondra, Mark
    Porter, Marc D.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237