Cryogenic method for H2 and CH4 recovery from a rich CO2 stream in pre-combustion carbon capture and storage schemes

被引:38
|
作者
Atsonios, K. [1 ,2 ]
Panopoulos, K. D. [2 ]
Doukelis, A. [1 ]
Koumanakos, A. [1 ]
Kakaras, E. [1 ,2 ]
机构
[1] Natl Tech Univ Athens, Lab Steam Boilers & Thermal Plants, Athens 15780, Greece
[2] Ctr Res & Technol Hellas, Chem Proc & Energy Resources Inst, Thessaloniki 57001, Greece
关键词
Hydrogen production; ATR; WGS membrane reactor; CO2; purification; Cryogenic separation; ASPEN Plus; ALLOY MEMBRANES; COMPRESSION; ENERGY; OPTIMIZATION; HYDROGEN;
D O I
10.1016/j.energy.2013.02.026
中图分类号
O414.1 [热力学];
学科分类号
摘要
The pre-combustion carbon capture technology based on coal gasification or methane reforming followed by (water gas shift reactors assisted with Pd-alloys membranes) WGS-MR is considered very promising for the production of a rich hydrogen stream that can be combusted in combined cycles. However, recovery of the total H-2 content is not feasible and a part of it remains in the retentate side. The requirement for upstream high pressure operation of the necessary reforming step has a drawback: complete reforming of CH4 is not possible; thus small but significant amounts remain in the rich CO2 stream. These CH4 amounts not only affect the efficiency of the process but also are against regulations for the allowed composition of carbon dioxide for storage. Therefore, an efficient purification step before its compression is of high importance. The current work models a cryogenic method for the separation of combustibles from a rich-CO2 stream and evaluates its effects on the efficiency of the pre-combustion carbon capture system. The modeling study is performed with AspenPlus (TM). A study on the effect of operating parameters of the (Purification & Compression Unit) PCU integration on the performance is presented. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:106 / 113
页数:8
相关论文
共 50 条
  • [1] Bioorganic activated carbon from cashew nut shells for H2 adsorption and H2/CO2, H2/CH4, CO2/CH4, H2/CO2/CH4 selectivity in industrial applications
    Serafin, Jaroslaw
    Dziejarski, Bartosz
    Fonseca-Bermúdez, Óscar Javier
    Giraldo, Liliana
    Sierra-Ramírez, Rocío
    Bonillo, Marta Gil
    Farid, Ghulam
    Moreno-Piraján, Juan Carlos
    International Journal of Hydrogen Energy, 2024, 86 : 662 - 676
  • [2] Pre-combustion CO2 capture
    Jansen, Daniel
    Gazzani, Matteo
    Manzolini, Giampaolo
    van Dijk, Eric
    Carbo, Michiel
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2015, 40 : 167 - 187
  • [3] Highly efficient separation and equilibrium recovery of H2/CO2 in hydrate-based pre-combustion CO2 capture
    Lee, Yunseok
    Lee, Seungin
    Seo, Dongju
    Moon, Seokyoon
    Ahn, Yun-Ho
    Park, Youngjune
    CHEMICAL ENGINEERING JOURNAL, 2024, 481
  • [4] Developing activated carbon adsorbents for pre-combustion CO2 capture
    Drage, T. C.
    Kozynchenko, O.
    Pevida, C.
    Plaza, M. G.
    Rubiera, F.
    Pis, J. J.
    Snape, C. E.
    Tennison, S.
    GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 599 - 605
  • [5] Spider silk-derived nanoporous activated carbon fiber for CO2 capture and CH4 and H2 storage
    Muhammad, Raeesh
    Nah, Yoon-Chae
    Oh, Hyunchul
    JOURNAL OF CO2 UTILIZATION, 2023, 69
  • [6] CO2/CH4, CH4/H2 and CO2/CH4/H2 separations at high pressures using Mg2(dobdc)
    Herm, Zoey R.
    Krishna, Rajamani
    Long, Jeffrey R.
    MICROPOROUS AND MESOPOROUS MATERIALS, 2012, 151 : 481 - 487
  • [7] Carbon capture and utilization under EU law: impermanent storage of CO2 in products and pre-combustion carbon capture
    Talus, Kim
    Maddahi, Reza
    JOURNAL OF WORLD ENERGY LAW & BUSINESS, 2024, 17 (05): : 295 - 308
  • [8] Computational screening of covalent organic frameworks for CH4/H2, CO2/H2 and CO2/CH4 separations
    Tong, Minman
    Yang, Qingyuan
    Zhong, Chongli
    MICROPOROUS AND MESOPOROUS MATERIALS, 2015, 210 : 142 - 148
  • [9] Reprint of: CO2/CH4, CH4/H2 and CO2/CH4/H2 separations at high pressures using Mg2(dobdc)
    Herm, Zoey R.
    Krishna, Rajamani
    Long, Jeffrey R.
    MICROPOROUS AND MESOPOROUS MATERIALS, 2012, 157 : 94 - 100
  • [10] Flexible nanoporous activated carbon cloth for achieving high H2, CH4, and CO2 storage capacities and selective CO2/CH4 separation
    Attia, Nour F.
    Jung, Minji
    Park, Jaewoo
    Jang, Haenam
    Lee, Kiyoung
    Oh, Hyunchul
    CHEMICAL ENGINEERING JOURNAL, 2020, 379