Modification of Thermal Conductivity and Phonon Dispersion Relation by Means of Phononic Crystals

被引:0
|
作者
Sledzinska, M. [1 ,2 ]
El Sachat, A. [1 ,2 ,3 ]
Reparaz, J. S. [1 ,2 ]
Wagner, M. R. [1 ,2 ]
Alzina, F. [1 ,2 ]
Sotomayor Torres, C. M. [1 ,2 ,4 ]
机构
[1] CSIC, Catalan Inst Nanosci & Nanotechnol ICN2, Campus UAB, Barcelona 08193, Spain
[2] Barcelona Inst Sci & Technol, Campus UAB, Barcelona 08193, Spain
[3] Univ Autonoma Barcelona, Dept Phys, Campus UAB, E-08193 Barcelona, Spain
[4] ICREA, Barcelona 08010, Spain
来源
2017 23RD INTERNATIONAL WORKSHOP ON THERMAL INVESTIGATIONS OF ICS AND SYSTEMS (THERMINIC) | 2017年
关键词
SILICON;
D O I
暂无
中图分类号
O414.1 [热力学];
学科分类号
摘要
Heat conduction in silicon can be effectively reduced by means of periodic patterning of free-standing membranes. In this work we show a straightforward method for fabrication of free-standing phononic crystals based on thin silicon membranes. We use the contactless two-laser Raman thermometry method to measure thermal conductivity of the hexagonal phononic crystals. The aim of the study is to understand and control the behaviour of phonons in phononic crystals, with the target of minimizing the thermal conductivity. In particular, we are interested in the influence of the surface-to-volume ratio on the thermal conductivity.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Phonon considerations in the reduction of thermal conductivity in phononic crystals
    P. E. Hopkins
    L. M. Phinney
    P. T. Rakich
    R. H. Olsson
    I. El-Kady
    Applied Physics A, 2011, 103 : 575 - 579
  • [2] Phonon considerations in the reduction of thermal conductivity in phononic crystals
    Hopkins, P. E.
    Phinney, L. M.
    Rakich, P. T.
    Olsson, R. H., III
    El-Kady, I.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2011, 103 (03): : 575 - 579
  • [3] Phonon dispersion relation and phonon thermal conductivity in trilayer graphene at low temperatures
    Faizabadi, Edris.
    Karbalaii, Fateme.
    CARBON NANOTUBES, GRAPHENE, AND ASSOCIATED DEVICES IV, 2011, 8101
  • [4] MODIFICATION OF GENERALIZED CALLAWAY THERMAL-CONDUCTIVITY EQUATION TO ALLOW FOR PHONON DISPERSION
    DUBEY, KS
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1974, 63 (01): : K35 - K38
  • [5] Large scale lattice dynamics calculation for phonon dispersion relation of two-dimensional phononic crystals
    Wei, Zhiyong
    Jiang, Yongqiang
    Bi, Kedong
    Yang, Juekuan
    Chen, Yunfei
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2017, 47 (03): : 495 - 499
  • [6] Effect of loss on the dispersion relation of photonic and phononic crystals
    Laude, Vincent
    Maria Escalante, Jose
    Martinez, Alejandro
    PHYSICAL REVIEW B, 2013, 88 (22)
  • [7] Transmission function and thermal conductivity of Si phononic crystals
    Oh, Jung Hyun
    Jang, Moon-Gyu
    Moon, S. E.
    Shin, Mincheol
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2016, 24 (07)
  • [8] Influence of amorphous layers on the thermal conductivity of phononic crystals
    Verdier, Maxime
    Lacroix, David
    Didenko, Stanislav
    Robillard, Jean-Francois
    Lampin, Evelyne
    Bah, Thierno-Moussa
    Termentzidis, Konstantinos
    PHYSICAL REVIEW B, 2018, 97 (11)
  • [9] Rationalizing phonon dispersion for lattice thermal conductivity of solids
    Zhiwei Chen
    Xinyue Zhang
    Siqi Lin
    Lidong Chen
    Yanzhong Pei
    NationalScienceReview, 2018, 5 (06) : 888 - 894
  • [10] Role of phonon dispersion in lattice thermal conductivity modeling
    Chung, JD
    McGaughey, AJH
    Kaviany, M
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2004, 126 (03): : 376 - 380