Generation of a global synthetic tropical cyclone hazard dataset using STORM

被引:123
|
作者
Bloemendaal, Nadia [1 ]
Haigh, Ivan D. [2 ]
de Moel, Hans [1 ]
Muis, Sanne [1 ,3 ]
Haarsma, Reindert J. [4 ]
Aerts, Jeroen C. J. H. [1 ]
机构
[1] Vrije Univ Amsterdam, Inst Environm Studies IVM, NL-1081 HV Amsterdam, Netherlands
[2] Univ Southampton, Sch Ocean & Earth Sci, Natl Oceanog Ctr, European Way, Southampton SO14 3ZH, Hants, England
[3] Deltares, NL-2600 MH Delft, Netherlands
[4] Royal Netherlands Meteorol Inst KNMI, NL-3731 GA De Bilt, Netherlands
基金
荷兰研究理事会;
关键词
POTENTIAL INTENSITY; HURRICANE RISK; SIMULATION; FREQUENCY; MODEL;
D O I
10.1038/s41597-020-0381-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Over the past few decades, the world has seen substantial tropical cyclone (TC) damages, with the 2017 Hurricanes Harvey, Irma and Maria entering the top-5 costliest Atlantic hurricanes ever. Calculating TC risk at a global scale, however, has proven difficult given the limited temporal and spatial information on TCs across much of the global coastline. Here, we present a novel database on TC characteristics on a global scale using a newly developed synthetic resampling algorithm we call STORM (Synthetic Tropical cyclOne geneRation Model). STORM can be applied to any meteorological dataset to statistically resample and model TC tracks and intensities. We apply STORM to extracted TCs from 38 years of historical data from IBTrACS to statistically extend this dataset to 10,000 years of TC activity. We show that STORM preserves the TC statistics as found in the original dataset. The STORM dataset can be used for TC hazard assessments and risk modeling in TC-prone regions.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Generation of a global synthetic tropical cyclone hazard dataset using STORM
    Nadia Bloemendaal
    Ivan D. Haigh
    Hans de Moel
    Sanne Muis
    Reindert J. Haarsma
    Jeroen C. J. H. Aerts
    Scientific Data, 7
  • [2] Applicability Evaluation of the Global Synthetic Tropical Cyclone Hazard Dataset in Coastal China
    Li, Xiaomin
    Hou, Qi
    Zhang, Jie
    Zhang, Suming
    Du, Xuexue
    Zhao, Tangqi
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (01)
  • [3] Estimation of global tropical cyclone wind speed probabilities using the STORM dataset
    Bloemendaal, Nadia
    de Moel, Hans
    Muis, Sanne
    Haigh, Ivan D.
    Aerts, Jeroen C. J. H.
    SCIENTIFIC DATA, 2020, 7 (01)
  • [4] Estimation of global tropical cyclone wind speed probabilities using the STORM dataset
    Nadia Bloemendaal
    Hans de Moel
    Sanne Muis
    Ivan D. Haigh
    Jeroen C. J. H. Aerts
    Scientific Data, 7
  • [5] Evaluations of storm tide hazard along the coast of China using synthetic dynamic tropical cyclone events
    Yang, Jian
    Chen, Yu
    Tang, Yanan
    Duan, Zhongdong
    Yan, Guirong
    Ou, Jinping
    Gong, Ting
    Yang, Zhe
    Yin, Jianming
    COASTAL ENGINEERING, 2024, 194
  • [6] A global dataset of synthetic tropical cyclone tracks for the El Niño‒Southern Oscillation
    Itxaso Odériz
    Iñigo J. Losada
    Scientific Data, 12 (1)
  • [7] Understanding Uncertainties in Tropical Cyclone Rainfall Hazard Modeling Using Synthetic Storms
    Xi, Dazhi
    Lin, Ning
    JOURNAL OF HYDROMETEOROLOGY, 2022, 23 (06) : 925 - 946
  • [8] Application of a synthetic cyclone method for assessment of tropical cyclone storm tides in Samoa
    McInnes, Kathleen L.
    Hoeke, Ron K.
    Walsh, Kevin J. E.
    O'Grady, Julian G.
    Hubbert, Graeme D.
    NATURAL HAZARDS, 2016, 80 (01) : 425 - 444
  • [9] Application of a synthetic cyclone method for assessment of tropical cyclone storm tides in Samoa
    Kathleen L. McInnes
    Ron K. Hoeke
    Kevin J. E. Walsh
    Julian G. O’Grady
    Graeme D. Hubbert
    Natural Hazards, 2016, 80 : 425 - 444
  • [10] Global modeling of tropical cyclone storm surges using high-resolution forecasts
    Nadia Bloemendaal
    Sanne Muis
    Reindert J. Haarsma
    Martin Verlaan
    Maialen Irazoqui Apecechea
    Hans de Moel
    Philip J. Ward
    Jeroen C. J. H. Aerts
    Climate Dynamics, 2019, 52 : 5031 - 5044