Tight SDP Relaxations for Cardinality-Constrained Problems

被引:0
|
作者
Wiegele, Angelika [1 ]
Zhao, Shudian [1 ]
机构
[1] Alpen Adria Univ Klagenfurt, Inst Math, Univ Str 65-67, A-9020 Klagenfurt, Austria
关键词
Semidefinite programming; Cardinality-constrained problem; Mixed-integer nonlinear programming; PROGRAMS;
D O I
10.1007/978-3-031-08623-6_26
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We model the cardinality-constrained portfolio problem using semidefinite matrices and investigate a relaxation using semidefinite programming. Experimental results show that this relaxation generates tight lower bounds and even achieves optimality on many instances from the literature. This underlines the modeling power of semidefinite programming for mixed-integer quadratic problems.
引用
收藏
页码:167 / 172
页数:6
相关论文
共 50 条
  • [1] Convex relaxations and MIQCQP reformulations for a class of cardinality-constrained portfolio selection problems
    Cui, X. T.
    Zheng, X. J.
    Zhu, S. S.
    Sun, X. L.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2013, 56 (04) : 1409 - 1423
  • [2] Convex relaxations and MIQCQP reformulations for a class of cardinality-constrained portfolio selection problems
    X. T. Cui
    X. J. Zheng
    S. S. Zhu
    X. L. Sun
    [J]. Journal of Global Optimization, 2013, 56 : 1409 - 1423
  • [3] Swarm Intelligence for Cardinality-Constrained Portfolio Problems
    Deng, Guang-Feng
    Lin, Woo-Tsong
    [J]. COMPUTATIONAL COLLECTIVE INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS, PT III, 2010, 6423 : 406 - 415
  • [4] Reachability problems in interval-constrained and cardinality-constrained graphs
    Velasquez, Alvaro
    Subramani, K.
    Wojciechowski, Piotr
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (04)
  • [5] An Augmented Lagrangian Method for Cardinality-Constrained Optimization Problems
    Christian Kanzow
    Andreas B. Raharja
    Alexandra Schwartz
    [J]. Journal of Optimization Theory and Applications, 2021, 189 : 793 - 813
  • [6] An Augmented Lagrangian Method for Cardinality-Constrained Optimization Problems
    Kanzow, Christian
    Raharja, Andreas B.
    Schwartz, Alexandra
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2021, 189 (03) : 793 - 813
  • [7] A cardinality-constrained approach for robust machine loading problems
    Lugaresi, Giovanni
    Lanzarone, Ettore
    Frigerio, Nicola
    Matta, Andrea
    [J]. 27TH INTERNATIONAL CONFERENCE ON FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING, FAIM2017, 2017, 11 : 1718 - 1725
  • [8] Convergent Inexact Penalty Decomposition Methods for Cardinality-Constrained Problems
    Lapucci, Matteo
    Levato, Tommaso
    Sciandrone, Marco
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2021, 188 (02) : 473 - 496
  • [9] Sequential optimality conditions for cardinality-constrained optimization problems with applications
    Kanzow, Christian
    Raharja, Andreas B.
    Schwartz, Alexandra
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2021, 80 (01) : 185 - 211
  • [10] Cardinality-Constrained Texture Filtering
    Manson, Josiah
    Schaefer, Scott
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2013, 32 (04):