SPARSE SENSOR SELECTION FOR NONPARAMETRIC DECENTRALIZED DETECTION VIA L1 REGULARIZATION

被引:0
|
作者
Wang, Weiguang [1 ]
Liang, Yingbin [1 ]
Xing, Eric P. [2 ]
Shen, Lixin [3 ]
机构
[1] Syracuse Univ, Dept Elect Engn & Comp Sci, Syracuse, NY 13244 USA
[2] Carnegie Mellon Univ, Sch Comp Sci, Pittsburgh, PA 15213 USA
[3] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sensor selection in nonparametric decentralized detection is investigated. Kernel-based minimization framework with a weighted kernel is adopted, where the kernel weight parameters represent sensors' contributions to decision making. L-1 regularization on weight parameters is introduced into the risk function so that the resulting optimal decision rule contains a sparse vector of nonzero weight parameters. In this way, sensor selection is naturally performed because only sensors corresponding to nonzero weight parameters contribute to decision making. A gradient projection algorithm and a Gauss-Seidel algorithm are developed to jointly perform weight selection (i.e., sensor selection) and optimize decision rules. Both algorithms are shown to converge to critical points for this non-convex optimization problem. Numerical results are provided to demonstrate the advantages and properties of the proposed sensor selection approach.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [1] Nonparametric Decentralized Detection and Sparse Sensor Selection Via Weighted Kernel
    Wang, Weiguang
    Liang, Yingbin
    Xing, Eric P.
    Shen, Lixin
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (02) : 306 - 321
  • [2] Nonparametric Decentralized Detection and Sparse Sensor Selection via Multi-Sensor Online Kernel Scalar Quantization
    Guo, Jing
    Raj, Raghu G.
    Love, David J.
    Brinton, Christopher G.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 2593 - 2608
  • [3] NONCONVEX L1/2 REGULARIZATION FOR SPARSE PORTFOLIO SELECTION
    Xu, Fengmin
    Wang, Guan
    Gao, Yuelin
    PACIFIC JOURNAL OF OPTIMIZATION, 2014, 10 (01): : 163 - 176
  • [4] Sparse possibilistic clustering with L1 regularization
    Inokuchi, Ryo
    Miyamoto, Sadaaki
    GRC: 2007 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, PROCEEDINGS, 2007, : 442 - 445
  • [5] Sparse portfolio optimization via l1 over l2 regularization
    Wu, Zhongming
    Sun, Kexin
    Ge, Zhili
    Allen-Zhao, Zhihua
    Zeng, Tieyong
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2024, 319 (03) : 820 - 833
  • [6] Sparse minimal learning machines via l1/2 norm regularization
    Dias, Madson L. D.
    Freire, Ananda L.
    Souza Junior, Amauri H.
    da Rocha Neto, Ajalmar R.
    Gomes, Joao P. P.
    2018 7TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2018, : 206 - 211
  • [7] Variable selection for functional regression models via the L1 regularization
    Matsui, Hidetoshi
    Konishi, Sadanori
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (12) : 3304 - 3310
  • [8] αl1 - βl2 regularization for sparse recovery
    Ding, Liang
    Han, Weimin
    INVERSE PROBLEMS, 2019, 35 (12)
  • [9] Parameter choices for sparse regularization with the l1 norm
    Liu, Qianru
    Wang, Rui
    Xu, Yuesheng
    Yan, Mingsong
    INVERSE PROBLEMS, 2023, 39 (02)
  • [10] Sparse Hopfield network reconstruction with l1 regularization
    Huang, Haiping
    EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (11):