SUPERVISED CLASSIFICATION OF HYPERSPECTRAL IMAGES VIA HETEROGENEOUS DEEP NEURAL NETWORKS

被引:0
|
作者
Li, Zhixin [1 ]
Shen, Yu [1 ]
Huang, Nan [1 ]
Xiao, Liang [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral image classification; DNN; CNN; Deep learning; heterogenous;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this paper, a new heterogeneous neural networks based deep learning method, named HNNDL, is presented for supervised classification of hyperspectral image (HSI) with a small number of labeled samples. Specifically, a deep neural Network (DNN) and a convolutional neural network (CNN) are combined to build a HNNDL architecture. The proposed architecture contains three modules: 1) dimension reduction and feature extraction, 2) training pixel-wise DNN and CNN, 3) bilateral filtering based decision level fusion on two soft probability maps which is produced by above classifiers. The rationale behind this heterogeneous deep learning architecture is their ability to learn more abstract and robust local spectral-spatial information by taking full advantages of complementary ability of each networks, and thus boost the performance of HSI classifier. Experimental results on the widely used HSI indicate that the proposed approach outperforms several well-known classification methods in terms of classification accuracy.
引用
下载
收藏
页码:1812 / 1815
页数:4
相关论文
共 50 条
  • [1] DEEP SUPERVISED LEARNING FOR HYPERSPECTRAL DATA CLASSIFICATION THROUGH CONVOLUTIONAL NEURAL NETWORKS
    Makantasis, Konstantinos
    Karantzalos, Konstantinos
    Doulamis, Anastasios
    Doulamis, Nikolaos
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4959 - 4962
  • [2] Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks
    Chen, Yushi
    Jiang, Hanlu
    Li, Chunyang
    Jia, Xiuping
    Ghamisi, Pedram
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10): : 6232 - 6251
  • [3] Spectral-spatial classification of hyperspectral images using deep convolutional neural networks
    Yue, Jun
    Zhao, Wenzhi
    Mao, Shanjun
    Liu, Hui
    REMOTE SENSING LETTERS, 2015, 6 (06) : 468 - 477
  • [4] HyperConv: spatio-spectral classification of hyperspectral images with deep convolutional neural networks
    Ko, Seyoon
    Jun, Goo
    Won, Joong-Ho
    KOREAN JOURNAL OF APPLIED STATISTICS, 2016, 29 (05) : 859 - 872
  • [5] WEED CLASSIFICATION IN HYPERSPECTRAL REMOTE SENSING IMAGES VIA DEEP CONVOLUTIONAL NEURAL NETWORK
    Farooq, Adnan
    Hu, Jiankun
    Jia, Xiuping
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 3816 - 3819
  • [6] Classification of Hyperspectral Images Using Conventional Neural Networks
    Kozik, V., I
    Nezhevenko, E. S.
    OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2021, 57 (02) : 123 - 131
  • [7] Classification of Hyperspectral Images Using Conventional Neural Networks
    V. I. Kozik
    E. S. Nezhevenko
    Optoelectronics, Instrumentation and Data Processing, 2021, 57 : 123 - 131
  • [8] Deep Convolutional Neural Networks for Hyperspectral Image Classification
    Hu, Wei
    Huang, Yangyu
    Wei, Li
    Zhang, Fan
    Li, Hengchao
    JOURNAL OF SENSORS, 2015, 2015
  • [9] Deep Recurrent Neural Networks for Hyperspectral Image Classification
    Mou, Lichao
    Ghamisi, Pedram
    Zhu, Xiao Xiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (07): : 3639 - 3655
  • [10] Hyperspectral classification via deep networks and superpixel segmentation
    Liu, Yazhou
    Cao, Guo
    Sun, Quansen
    Siegel, Mel
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2015, 36 (13) : 3459 - 3482