ON COUNTABLE FAMILIES OF SETS WITHOUT THE BAIRE PROPERTY

被引:1
|
作者
Aigner, Mats [1 ]
Chatyrko, Vitalij A. [1 ]
Nyagahakwa, Venuste [2 ]
机构
[1] Linkoping Univ, Dept Math, S-58183 Linkoping, Sweden
[2] Natl Univ Rwanda, Dept Math, Butare, Rwanda
关键词
Vitali set; Baire property; admissible extension of a topology;
D O I
10.4064/cm133-2-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We suggest a method of constructing decompositions of a topological space X having an open subset homeomorphic to the space (R-n , tau), where n is an integer >= 1 and tau is any admissible extension of the Euclidean topology of R-n (in particular, X can be a finite-dimensional separable metrizable manifold), into a countable family F of sets (dense in X and zero-dimensional in the case of manifolds) such that the union of each non-empty proper subfamily of F does not have the Baire property in X.
引用
收藏
页码:179 / 187
页数:9
相关论文
共 50 条