A Stochastic Approach to Eulerian Numbers

被引:3
|
作者
Mittelstaedt, Kiana [1 ]
机构
[1] Univ Washington, Appl Math, Seattle, WA 98195 USA
来源
AMERICAN MATHEMATICAL MONTHLY | 2020年 / 127卷 / 07期
关键词
MSC: Primary 60C05; Secondary; 05A15;
D O I
10.1080/00029890.2020.1757359
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We examine the aggregate behavior of one-dimensional random walks in a model known as (one-dimensional) Internal Diffusion Limited Aggregation. In this model, a sequence of n particles perform random walks on the integers, beginning at the origin. Each particle walks until it reaches an unoccupied site, at which point it occupies that site and the next particle begins its walk. After all walks are complete, the set of occupied sites is an interval of length n containing the origin. We show the probability that k of the occupied sites are positive is given by an Eulerian probability distribution. Having made this connection, we use generating function techniques to compute the expected run time of the model.
引用
收藏
页码:618 / 628
页数:11
相关论文
共 50 条
  • [1] General Eulerian Numbers and Eulerian Polynomials
    Xiong, Tingyao
    Tsao, Hung-Ping
    Hall, Jonathan I.
    JOURNAL OF MATHEMATICS, 2013, 2013
  • [2] Congruences for Stirling numbers and Eulerian numbers
    Cao, Hui-Qin
    Pan, Hao
    ACTA ARITHMETICA, 2008, 132 (04) : 315 - 328
  • [3] On a convolution of Eulerian numbers
    Callan, D
    AMERICAN MATHEMATICAL MONTHLY, 1999, 106 (07): : 690 - 691
  • [4] EULERIAN NUMBERS AND OPERATORS
    CARLITZ, L
    SCOVILLE, R
    FIBONACCI QUARTERLY, 1975, 13 (01): : 71 - 83
  • [5] Remixed Eulerian numbers
    Nadeau, Philippe
    Tewari, Vasu
    FORUM OF MATHEMATICS SIGMA, 2023, 11
  • [6] CONGRUENCES FOR EULERIAN NUMBERS
    CARLITZ, L
    RIORDAN, J
    DUKE MATHEMATICAL JOURNAL, 1953, 20 (03) : 339 - 343
  • [7] ON EXTENDED EULERIAN NUMBERS
    Bayad, Abdelmejid
    Hernane, Mohand Ouamar
    Togbe, Alain
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2016, 55 (01) : 113 - 130
  • [8] Derivatives and Eulerian numbers
    Rzadkowski, Grzegorz
    AMERICAN MATHEMATICAL MONTHLY, 2008, 115 (05): : 458 - 460
  • [9] On a generalization of Eulerian numbers
    Pita-Ruiz, Claudio
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2018, 24 (01) : 16 - 42
  • [10] Extending the stochastic approach to index numbers
    Crompton, P
    APPLIED ECONOMICS LETTERS, 2000, 7 (06) : 367 - 371