LRZ CONVOLUTION: An Algorithm for Automatic Anomaly Detection in Time-series Data

被引:2
|
作者
Marathe, Arunprasad P. [1 ]
机构
[1] Huawei Technol Canada, Markham, ON, Canada
关键词
anomaly detection; z-score; z-score of mean difference; statistical significance; time-series data; performance measurement; experimentation; convolution; data science; OUTLIER DETECTION;
D O I
10.1145/3400903.3400904
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automatic anomaly detection is a hard but practically useful problem. With telemetry data sizes growing constantly, experts will rely increasingly on automation to bring anomalies to their attention. In this paper, anomaly transition points (called change points elsewhere), are determined using a novel application of a somewhat obscure statistical score called "z-score of mean difference". Use of this score yields a practical linear-time algorithm called LRZ Convolution with sound statistical underpinnings, and which does not require data normality. Each anomaly transition point is accompanied by a set of explanatory predicates that can form a good starting point for determining an anomaly's root causes. Careful experimental evaluation and performance in two independent domains show promising results. A preliminary comparison with a well-known machine learning algorithm called Support Vector Machines (SVM) yields a highly favorable outcome.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A Modified DBSCAN Algorithm for Anomaly Detection in Time-series Data with
    Jain, Praphula
    Bajpai, Mani Shankar
    Pamula, Rajendra
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2022, 19 (01) : 23 - 28
  • [2] Automatic Classification Rules for Anomaly Detection in Time-Series
    Ben Kraiem, Ines
    Ghozzi, Faiza
    Peninou, Andre
    Roman-Jimenez, Geoffrey
    Teste, Olivier
    RESEARCH CHALLENGES IN INFORMATION SCIENCE (RCIS 2020), 2020, 385 : 321 - 337
  • [3] Suboptimal Partitioning of Time-series Data for Anomaly Detection
    Jin, Xin
    Sarkar, Soumik
    Mukherjee, Kushal
    Ray, Asok
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 1020 - 1025
  • [4] Anomaly Detection for IoT Time-Series Data: A Survey
    Cook, Andrew A.
    Misirli, Goksel
    Fan, Zhong
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (07): : 6481 - 6494
  • [5] Anomaly Detection in COVID-19 Time-Series Data
    Homayouni H.
    Ray I.
    Ghosh S.
    Gondalia S.
    Kahn M.G.
    SN Computer Science, 2021, 2 (4)
  • [6] Contrastive Time-Series Anomaly Detection
    Kim, Hyungi
    Kim, Siwon
    Min, Seonwoo
    Lee, Byunghan
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (10) : 5053 - 5065
  • [7] An Algorithm for Classification and Outlier Detection of Time-Series Data
    Weekley, R. Andrew
    Goodrich, Robert K.
    Cornman, Larry B.
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2010, 27 (01) : 94 - 107
  • [8] Data-Driven Anomaly Detection Approach for Time-Series Streaming Data
    Zhang, Minghu
    Guo, Jianwen
    Li, Xin
    Jin, Rui
    SENSORS, 2020, 20 (19) : 1 - 17
  • [9] Anomaly Detection in Industrial Multivariate Time-Series Data With Neutrosophic Theory
    Liu, Peng
    Han, Qilong
    Wu, Ting
    Tao, Wenjian
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (15) : 13458 - 13473
  • [10] Anomaly Detection of an Air Compressor from Time-series Measurement Data
    Kim, Myeong-Joon
    Cho, Hyun-Jik
    Kang, Chul-Goo
    2022 22ND INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2022), 2022, : 825 - 828