PRODIGY: a web server for predicting the binding affinity of protein-protein complexes

被引:697
|
作者
Xue, Li C. [1 ]
Rodrigues, Joao P. G. L. M. [1 ,2 ]
Kastritis, Panagiotis L. [1 ,3 ]
Bonvin, Alexandre M. J. J. [1 ]
Vangone, Anna [1 ]
机构
[1] Univ Utrecht, Fac Sci, Bijvoet Ctr Biomol Res, Dept Chem,Computat Struct Biol Grp, NL-3584 CH Utrecht, Netherlands
[2] Stanford Univ, Sch Med, Dept Biol Struct, Stanford, CA 94305 USA
[3] European Mol Biol Lab, Struct & Computat Biol Unit, Heidelberg, Germany
关键词
D O I
10.1093/bioinformatics/btw514
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Gaining insights into the structural determinants of protein-protein interactions holds the key for a deeper understanding of biological functions, diseases and development of therapeutics. An important aspect of this is the ability to accurately predict the binding strength for a given protein-protein complex. Here we present PROtein binDIng enerGY prediction (PRODIGY), a web server to predict the binding affinity of protein-protein complexes from their 3D structure. The PRODIGY server implements our simple but highly effective predictive model based on intermolecular contacts and properties derived from non-interface surface.
引用
收藏
页码:3676 / 3678
页数:3
相关论文
共 50 条
  • [1] ProBAN: Neural network algorithm for predicting binding affinity in protein-protein complexes
    Bogdanova, Elizaveta Alexandrovna
    Novoseletsky, Valery Nikolaevich
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2024, 92 (09) : 1127 - 1136
  • [2] Large-scale prediction of binding affinity in protein-small ligand complexes: the PRODIGY-LIG web server
    Vangone, Anna
    Schaarschmidt, Joerg
    Koukos, Panagiotis
    Geng, Cunliang
    Citro, Nevia
    Trellet, Mikael E.
    Xue, Li C.
    Bonvin, Alexandre M. J. J.
    [J]. BIOINFORMATICS, 2019, 35 (09) : 1585 - 1587
  • [3] Prediction of structure and binding affinity of protein-protein complexes
    Bonvin, Alexandre M. J. J.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [4] Predicting the Impact of Missense Mutations on Protein-Protein Binding Affinity
    Li, Minghui
    Petukh, Marharyta
    Alexov, Emil
    Panchenko, Anna R.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (04) : 1770 - 1780
  • [5] Deep learning-based method for predicting and classifying the binding affinity of protein-protein complexes
    Nikam, Rahul
    Yugandhar, Kumar
    Gromiha, M. Michael
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2023, 1871 (06):
  • [6] PBSword: a web server for searching similar protein-protein binding sites
    Pang, Bin
    Kuang, Xingyan
    Zhao, Nan
    Korkin, Dmitry
    Shyu, Chi-Ren
    [J]. NUCLEIC ACIDS RESEARCH, 2012, 40 (W1) : W428 - W434
  • [7] Analysis of Relative Binding Affinity Predictions for Protein-Protein Complexes
    Bonner, Xavier
    Kuhlman, Brian
    Yumerefendi, Hayretin
    [J]. BIOPHYSICAL JOURNAL, 2018, 114 (03) : 408A - 408A
  • [8] DeepPPAPredMut: deep ensemble method for predicting the binding affinity change in protein-protein complexes upon mutation
    Nikam, Rahul
    Jemimah, Sherlyn
    Gromiha, M. Michael
    [J]. BIOINFORMATICS, 2024, 40 (05)
  • [9] MPA-Pred: A machine learning approach for predicting the binding affinity of membrane protein-protein complexes
    Ridha, Fathima
    Gromiha, M. Michael
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2024, 92 (04) : 499 - 508
  • [10] A database server for predicting protein-protein interactions
    Han, K
    Park, B
    [J]. COMPUTATIONAL SCIENCE - ICCS 2004, PT 1, PROCEEDINGS, 2004, 3036 : 271 - 278