Computational Fluid Dynamics Using the Adaptive Wavelet-Collocation Method

被引:2
|
作者
Mehta, Yash [1 ]
Nejadmalayeri, Ari [2 ]
Regele, Jonathan David [3 ]
机构
[1] Los Alamos Natl Lab, T-3,POB 1663, Los Alamos, NM 87545 USA
[2] WellianTM Inc, 2060 Broadway St,Suite B-1, Boulder, CO 80302 USA
[3] Los Alamos Natl Lab, XCP 4,POB 1663, Los Alamos, NM 87545 USA
关键词
wavelet-collocation; computational fluid dynamics; volume penalization; fluid instabilities; parallel algorithm; turbulence modeling; turbulence simulation; ocean modeling; detonation initiation; hot spot;
D O I
10.3390/fluids6110377
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Advancements to the adaptive wavelet-collocation method over the last decade have opened up a number of new possible areas for active research. Volume penalization techniques allow complex immersed boundary conditions to be used with high efficiency for both internal and external flows. Anisotropic methods make it possible to use body-fitted meshes while still taking advantage of the dynamic adaptability properties wavelet-based methods provide. The parallelization of the approach has made it possible to perform large high-resolution simulations of detonation initiation and fluid instabilities to uncover new physical insights that would otherwise be difficult to discover. Other developments include space-time adaptive methods and nonreflecting boundary conditions. This article summarizes the work performed using the adaptive wavelet-collocation method developed by Vasilyev and coworkers over the past decade.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] An adaptive wavelet-collocation method for shock computations
    Regele, J. D.
    Vasilyev, O. V.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2009, 23 (07) : 503 - 518
  • [2] Numerical modeling of electromagnetics via a wavelet-collocation method
    Bao, G
    Wei, GW
    Zhao, S
    IEEE ANTENNAS AND PROPAGATION SOCIETY SYMPOSIUM, VOLS 1-4 2004, DIGEST, 2004, : 1467 - 1470
  • [3] The wavelet-collocation method for transient problems with steep gradients
    Liu, Y
    Cameron, IT
    Wang, FY
    CHEMICAL ENGINEERING SCIENCE, 2000, 55 (09) : 1729 - 1734
  • [4] Parallel adaptive wavelet collocation method for PDEs
    Nejadmalayeri, Alireza
    Vezolainen, Alexei
    Brown-Dymkoski, Eric
    Vasilyev, Oleg V.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 298 : 237 - 253
  • [5] An adaptive wavelet collocation method for fluid-structure interaction at high Reynolds numbers
    Kevlahan, NKR
    Vasilyev, OV
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (06): : 1894 - 1915
  • [6] Wavelet Methods in Computational Fluid Dynamics
    Schneider, Kai
    Vasilyev, Oleg V.
    ANNUAL REVIEW OF FLUID MECHANICS, 2010, 42 : 473 - 503
  • [7] Adaptive wavelet collocation method on the shallow water model
    Reckinger, Shanon M.
    Vasilyev, Oleg V.
    Fox-Kemper, Baylor
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 271 : 342 - 359
  • [8] An adaptive multilevel wavelet collocation method for elliptic problems
    Vasilyev, OV
    Kevlahan, NKR
    JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 206 (02) : 412 - 431
  • [9] Point-Collocation Nonintrusive Polynomial Chaos Method for Stochastic Computational Fluid Dynamics
    Hosder, Serhat
    Walters, Robert W.
    Balch, Michael
    AIAA JOURNAL, 2010, 48 (12) : 2721 - 2730
  • [10] Computational Method for Optimal Guidance and Control Using Adaptive Gaussian Quadrature Collocation
    Dennis, Miriam E.
    Hager, William W.
    Rao, Anil, V
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2019, 42 (09) : 2026 - 2041