Modeling regional disease spread over time using a dynamic spatio-temporal model - With an application to porcine epidemic diarrhea virus data in Iowa, US

被引:0
|
作者
Ji, J. [1 ]
Wang, C. [1 ,2 ]
Rotolo, M. [2 ]
Zimmerman, J. [2 ]
机构
[1] Iowa State Univ, Coll Liberal Arts & Sci, Dept Stat, Ames, IA 50011 USA
[2] Iowa State Univ, Coll Vet Med, Dept Vet Diagnost & Prod Anim Med, Ames, IA 50011 USA
关键词
PEDV; Spatio-temporal model; Bayesian analysis;
D O I
10.1016/j.prevetmed.2020.105053
中图分类号
S85 [动物医学(兽医学)];
学科分类号
0906 ;
摘要
Regional surveillance is important for detecting the incursion of new pathogens and informing disease monitoring and control programs. Modeling disease distribution over time can provide insight into the development of more efficient regional surveillance approaches. Herein we propose a Bayesian spatio-temporal model to describe the distribution of porcine epidemic diarrhea virus (PEDV) in Iowa USA. Model parameters are estimated through a Bayesian spatio-temporal model approach which can account for missing values. For illustration, we apply the proposed model to PEDV test results from the Iowa State University Veterinary Diagnostic Laboratory (ISU-VDL). A simulation study carried out to evaluate the model showed that the proposed model captured the pattern of PEDV distribution and its spatio-temporal dependence.
引用
收藏
页数:10
相关论文
共 3 条
  • [1] Time-calibrated phylogenomics of the porcine epidemic diarrhea virus: genome-wide insights into the spatio-temporal dynamics
    Jang, Jisung
    Yoon, Sook Hee
    Lee, Wonseok
    Yu, Jihyun
    Yoon, Joon
    Shim, Seunghyun
    Kim, Heebal
    GENES & GENOMICS, 2018, 40 (08) : 825 - 834
  • [2] Time-calibrated phylogenomics of the porcine epidemic diarrhea virus: genome-wide insights into the spatio-temporal dynamics
    Jisung Jang
    Sook Hee Yoon
    Wonseok Lee
    Jihyun Yu
    Joon Yoon
    Seunghyun Shim
    Heebal Kim
    Genes & Genomics, 2018, 40 : 825 - 834
  • [3] Spatio-Temporal Dynamic Fields Estimating and Modeling of Missing Points in Data Sets Using a Flexible State-Space Model
    Shi, Zhichao
    Zhou, Xiaoguang
    APPLIED SCIENCES-BASEL, 2021, 11 (19):