Robust empirical Bayes small area estimation with density power divergence

被引:5
|
作者
Sugasawa, S. [1 ]
机构
[1] Univ Tokyo, Ctr Spatial Informat Sci, Kashiwa, Chiba 2728568, Japan
基金
日本学术振兴会;
关键词
Density power divergence; Empirical Bayes estimation; Fay-Herriot model; BOOTSTRAP METHODS; UNCERTAINTY; MODELS;
D O I
10.1093/biomet/asz075
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A two-stage normal hierarchical model called the Fay-Herriot model and the empirical Bayes estimator are widely used to obtain indirect and model-based estimates of means in small areas. However, the performance of the empirical Bayes estimator can be poor when the assumed normal distribution is misspecified. This article presents a simple modification that makes use of density power divergence and proposes a new robust empirical Bayes small area estimator. The mean squared error and estimated mean squared error of the proposed estimator are derived based on the asymptotic properties of the robust estimator of the model parameters. We investigate the numerical performance of the proposed method through simulations and an application to survey data.
引用
收藏
页码:467 / 480
页数:14
相关论文
共 50 条
  • [1] Robust Bayes estimation using the density power divergence
    Abhik Ghosh
    Ayanendranath Basu
    [J]. Annals of the Institute of Statistical Mathematics, 2016, 68 : 413 - 437
  • [2] Robust Bayes estimation using the density power divergence
    Ghosh, Abhik
    Basu, Ayanendranath
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2016, 68 (02) : 413 - 437
  • [3] Influence functions and robust Bayes and empirical Bayes small area estimation
    Ghosh, Malay
    Maiti, Tapabrata
    Roy, Ananya
    [J]. BIOMETRIKA, 2008, 95 (03) : 573 - 585
  • [4] Robust small area estimation for unit level model with density power divergence
    Niu, Xijuan
    Pang, Zhiqiang
    Wang, Zhaoxu
    [J]. PLOS ONE, 2023, 18 (11):
  • [5] Robust and efficient estimation by minimising a density power divergence
    Basu, A
    Harris, IR
    Hjort, NL
    Jones, MC
    [J]. BIOMETRIKA, 1998, 85 (03) : 549 - 559
  • [6] A QUASI-EMPIRICAL BAYES METHOD FOR SMALL-AREA ESTIMATION
    RAGHUNATHAN, TE
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (424) : 1444 - 1448
  • [7] Empirical best linear unbiased and empirical Bayes prediction in multivariate small area estimation
    Datta, GS
    Day, B
    Basawa, I
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1999, 75 (02) : 269 - 279
  • [8] An empirical evaluation of various priors in the empirical Bayes estimation of small area disease risks
    Yasui, Y
    Liu, H
    Benach, J
    Winget, M
    [J]. STATISTICS IN MEDICINE, 2000, 19 (17-18) : 2409 - 2420
  • [9] EMPIRICAL BAYES CONDITIONAL DENSITY ESTIMATION
    Scricciolo, Catia
    [J]. STATISTICA, 2015, 75 (01) : 37 - 55
  • [10] Empirical bayes estimation of small area prevalence of non-rare conditions
    Martuzzi, M
    Elliott, P
    [J]. STATISTICS IN MEDICINE, 1996, 15 (17-18) : 1867 - 1873