Maxdiff kd-trees for data condensation

被引:23
|
作者
Narayan, BL [1 ]
Murthy, CA [1 ]
Pal, SK [1 ]
机构
[1] Indian Stat Inst, Machine Intelligence Unit, Kolkata 700108, W Bengal, India
关键词
prototype selection; data representation; multiresolution kd-trees;
D O I
10.1016/j.patrec.2005.08.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Prototype selection on the basis of conventional clustering algorithms results in good representation but is extremely time-taking on large data sets. kd-trees, on the other hand, are exceptionally efficient in terms of time and space requirements for large data sets, but fail to produce a reasonable representation in certain situations. We propose a new algorithm with speed comparable to the present kd-tree based algorithms which overcomes the problems related to the representation for high condensation ratios. It uses the Maxdiff criterion to separate out distant clusters in the initial stages before splitting them any further thus improving on the representation. The splits being axis-parallel, more nodes would be required for the representing a data set which has no regions where the points are well separated. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:187 / 200
页数:14
相关论文
共 50 条
  • [1] KINETIC kd-TREES AND LONGEST-SIDE kd-TREES
    Abam, Mohammad Ali
    De Berg, Mark
    Speckmann, Bettina
    [J]. SIAM JOURNAL ON COMPUTING, 2009, 39 (04) : 1219 - 1232
  • [2] Differentially Private Synthetic Data Using KD-Trees
    Kreacic, Eleonora
    Nouri, Navid
    Potluru, Vamsi K.
    Balch, Tucker
    Veloso, Manuela
    [J]. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 1143 - 1153
  • [3] Kinetic medians and kd-trees
    Agarwal, PK
    Gao, J
    Guibas, LJ
    [J]. ALGORITHMS-ESA 2002, PROCEEDINGS, 2002, 2461 : 5 - 16
  • [4] OPT-KD: An algorithm for optimizing kd-trees
    Talbert, DA
    Fisher, DH
    [J]. MACHINE LEARNING, PROCEEDINGS, 1999, : 398 - 405
  • [5] On improving kd-trees for ray shooting
    Havran, V
    Bittner, J
    [J]. WSCG'2002, VOLS I AND II, CONFERENCE PROCEEDINGS, 2002, : 209 - 216
  • [6] Experiences with streaming construction of SAH KD-trees
    Popov, Stefan
    Guenther, Johannes
    Seidel, Hans-Peter
    Slusallek, Philipp
    [J]. RT 06: IEEE SYMPOSIUM ON INTERACTIVE RAY TRACING 2006, PROCEEDINGS, 2006, : 89 - 94
  • [7] ANALYSIS OF KDT-TREES - KD-TREES IMPROVED BY LOCAL REORGANIZATIONS
    CUNTO, W
    LAU, GKK
    FLAJOLET, P
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1989, 382 : 24 - 38
  • [8] Optimised KD-trees for fast image descriptor matching
    Silpa-Anan, Chanop
    Hartley, Richard
    [J]. 2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, : 2308 - +
  • [9] Online-Autotuning of Parallel SAH kD-Trees
    Tillmann, Martin
    Pfaffe, Philip
    Kaag, Christopher
    Tichy, Walter F.
    [J]. 2016 IEEE 30TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS 2016), 2016, : 628 - 637
  • [10] Optimizing kd-trees for scalable visual descriptor indexing
    Jia, You
    Wang, Jingdong
    Zeng, Gang
    Zha, Hongbin
    Hua, Xian-Sheng
    [J]. 2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 3392 - 3399