Convergence theorems for mixed type asymptotically nonexpansive mappings in the intermediate sense

被引:0
|
作者
Saluja, Gurucharan S. [1 ]
Postolache, Mihai [2 ,3 ]
Ghiura, Adrian [3 ]
机构
[1] Govt NPG Coll Sci, Dept Math, Raipur 492010, CG, India
[2] China Med Univ, 91 Hsueh Shih Rd, Taichung, Taiwan
[3] Univ Politehn Bucuresti, Dept Math & Informat, Splaiul Independentei 313, Bucharest 060042, Romania
来源
关键词
Asymptotically nonexpansive self and non-self mapping in intermediate sense; new two-step iteration scheme of mixed type; common fixed point; uniformly convex Banach space; strong convergence; weak convergence; WEAK-CONVERGENCE; FIXED-POINTS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a new two-step iteration scheme of mixed type for two asymptotically nonexpansive self mappings in the intermediate sense and two asymptotically nonexpansive non-self mappings in the intermediate sense and establish some strong and weak convergence theorems for mentioned scheme and mappings in uniformly convex Banach spaces. Our results extend and generalize the corresponding results of Chidume et al. [C. E. Chidume, E. U. Ofoedu, H. Zegeye, J. Math. Anal. Appl., 280 (2003), 364-374] and [C. E. Chidume, N. Shahzad, H. Zegeye, Numer. Funct. Anal. Optim., 25 (2004), 239-257], Guo et al. [W. Guo, W. Guo, Appl. Math. Lett., 24 (2011), 2181-2185] and [W. Guo, Y. J. Cho, W. Guo, Fixed Point Theory Appl., 2012 (2012), 15 pages], Saluja [G. S. Saluja, J. Indian Math. Soc. (N.S.), 81 (2014), 369-385], Schu [J. Schu, Bull. Austral. Math. Soc., 43 (1991), 153-159], Tan and Xu [K. K. Tan, H. K. Xu, J. Math. Anal. Appl., 178 (1993), 301-308], Wang [L. Wang, J. Math. Anal. Appl., 323 (2006), 550-557], Wei and Guo [S. I. Wei, W. Guo, Commun. Math. Res., 31 (2015), 149-160] and [S. Wei, W. Guo, J. Math. Study, 48 (2015), 256-264]. (C) 2016 All rights reserved.
引用
收藏
页码:5119 / 5135
页数:17
相关论文
共 50 条
  • [1] Convergence theorems for mappings which are asymptotically nonexpansive in the intermediate sense
    Chidume, CE
    Shahzad, N
    Zegeye, H
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2004, 25 (3-4) : 239 - 257
  • [2] Convergence theorems for mixed type asymptotically nonexpansive mappings
    Weiping Guo
    Yeol Je Cho
    Wei Guo
    Fixed Point Theory and Applications, 2012
  • [3] Convergence theorems for mixed type asymptotically nonexpansive mappings
    Guo, Weiping
    Cho, Yeol Je
    Guo, Wei
    FIXED POINT THEORY AND APPLICATIONS, 2012,
  • [4] Strong Convergence Theorems for Mixed Type Asymptotically Nonexpansive Mappings
    Wei Shi-long
    Guo Wei-ping
    Ji You-qing
    Communications in Mathematical Research, 2015, 31 (02) : 149 - 160
  • [5] Weak Convergence Theorems for Mixed Type Asymptotically Nonexpansive Mappings
    Wei, Shilong
    Guo, Weiping
    JOURNAL OF MATHEMATICAL STUDY, 2015, 48 (03): : 256 - 264
  • [6] Strong convergence for asymptotically nonexpansive mappings in the intermediate sense
    Kim, Gang Eun
    FIXED POINT THEORY AND APPLICATIONS, 2014,
  • [7] Strong convergence for asymptotically nonexpansive mappings in the intermediate sense
    Gang Eun Kim
    Fixed Point Theory and Applications, 2014
  • [8] Convergence theorems for equilibrium problem and asymptotically quasi-ϕ-nonexpansive mappings in the intermediate sense
    Jae Ug Jeong
    Fixed Point Theory and Applications, 2014
  • [9] Convergence theorems for equilibrium problem and asymptotically quasi-φ-nonexpansive mappings in the intermediate sense
    Jeong, Jae Ug
    FIXED POINT THEORY AND APPLICATIONS, 2014,
  • [10] Convergence Theorems on Asymptotically Pseudocontractive Mappings in the Intermediate Sense
    Qin, Xiaolong
    Cho, Sun Young
    Kim, Jong Kyu
    FIXED POINT THEORY AND APPLICATIONS, 2010,