CNN-GRNN for Image Sharpness Assessment

被引:12
|
作者
Yu, Shaode [1 ,2 ]
Jiang, Fan [1 ]
Li, Leida [3 ]
Xie, Yaoqin [1 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
[2] Univ Chinese Acad Sci, Shenzhen Coll Adv Technol, Shenzhen, Peoples R China
[3] Chinese Univ Min & Technol, Sch Informat & Elect Engn, Xuzhou, Peoples R China
来源
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
QUALITY ASSESSMENT; DATABASE;
D O I
10.1007/978-3-319-54407-6_4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Image sharpness is key to readability and scene understanding. Because of the inaccessible reference information, blind image sharpness assessment (BISA) is useful and challenging. In this paper, a shallow convolutional neural network (CNN) is proposed for intrinsic representation of image sharpness and general regression neural network (GRNN) is utilized for precise score prediction. The hybrid CNN-GRNN model tends to build functional relationship between retrieved features and subjective human scores by supervised learning. Superior to traditional algorithms based on handcrafted features and machine learning, CNN-GRNN fuses feature extraction and score prediction into an optimization procedure. Experiments on Gaussian blurring images in LIVE, CSIQ, TID2008 and TID2013 show that CNN-GRNN outperforms the state-of-the-art algorithms and gets closer to human subjective judgment.
引用
收藏
页码:50 / 61
页数:12
相关论文
共 50 条
  • [1] 基于CNN-GRNN模型的图像识别
    江帆
    刘辉
    王彬
    孙晓峰
    代照坤
    [J]. 计算机工程, 2017, 43 (04) : 257 - 262
  • [2] Construction of offline predictive controller for wind farm based on CNN-GRNN
    Wang, Yu
    Wei, Shanbi
    Yang, Wei
    Chai, Yi
    Li, Penghua
    [J]. CONTROL ENGINEERING PRACTICE, 2022, 127
  • [3] The prediction model of worsted yarn quality based on CNN-GRNN neural network
    Hu, Zhenlong
    Zhao, Qiang
    Wang, Jun
    [J]. NEURAL COMPUTING & APPLICATIONS, 2019, 31 (09): : 4551 - 4562
  • [4] A novel hybrid machine learning approach for traffic sign detection using CNN-GRNN
    Pandurangan, Raji
    Jayaseelan, Samuel Manoharan
    Rajalingam, Suresh
    Angelo, Kandavalli Michael
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (01) : 1283 - 1303
  • [5] 融合注意力机制和CNN-GRNN模型的读者情绪预测
    张琦
    彭志平
    [J]. 计算机工程与应用, 2018, (13) : 168 - 174
  • [6] Image Sharpness Assessment by Sparse Representation
    Li, Leida
    Wu, Dong
    Wu, Jinjian
    Li, Haoliang
    Lin, Weisi
    Kot, Alex C.
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2016, 18 (06) : 1085 - 1097
  • [7] Color and sharpness assessment of single image dehazing
    El Khoury, Jessica
    Le Moan, Steven
    Thomas, Jean-Baptiste
    Mansouri, Alamin
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (12) : 15409 - 15430
  • [8] Edge Preservation Ratio for Image Sharpness Assessment
    Chen, Luming
    Jiang, Fan
    Zhang, Hefang
    Wu, Shihin
    Yu, Shaode
    Xie, Yaoqin
    [J]. PROCEEDINGS OF THE 2016 12TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2016, : 1377 - 1381
  • [9] Color and sharpness assessment of single image dehazing
    Jessica El Khoury
    Steven Le Moan
    Jean-Baptiste Thomas
    Alamin Mansouri
    [J]. Multimedia Tools and Applications, 2018, 77 : 15409 - 15430
  • [10] Assessment of speckle image through particle size and image sharpness
    Qian, Boxing
    Liang, Jin
    Gong, Chunyuan
    [J]. SMART STRUCTURES AND SYSTEMS, 2019, 24 (05) : 659 - 668