On the Stability of Cubic Mappings and Quadratic Mappings in Random Normed Spaces

被引:45
|
作者
Baktash, E. [3 ,4 ]
Cho, Y. J. [1 ,2 ]
Jalili, M. [5 ]
Saadati, R. [6 ,7 ]
Vaezpour, S. M. [6 ]
机构
[1] Gyeongsang Natl Univ, Dept Math Educ, Chinju 660701, South Korea
[2] Gyeongsang Natl Univ, RINS, Chinju 660701, South Korea
[3] Islamic Azad Univ, Dept Basic Sci, Ayatollah Amoli Branch, Amol, Iran
[4] Youngs Researchers Club, Amol, Iran
[5] Islamic Azad Univ, Dept Mech Engn, Ayatollah Amoli Branch, Amol, Iran
[6] Amir Kabir Univ Technol, Dept Math & Comp Sci, Tehran 15914, Iran
[7] Univ Shomal, Fac Sci, Amol, Iran
关键词
D O I
10.1155/2008/902187
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, the stability of the cubic functional equation f (2x + y) + f(2x - y) = 2f (x + y) + 2f (x - y) + 12f (x) in fuzzy normed spaces was proved in earlier work; and the stability of the additive functional equations f(x + y) = f(x) + f(y), 2f((x + y)/2) = f(x) + f(y) in random normed spaces was proved as well. In this paper, we prove the stability of the cubic functional equation f(2x + y) + f(2x - y) = 2f(x + y) + 2f(x - y) + 12f(x) in random normed spaces by an alternative proof which provides a better estimation. Finally, we prove the stability of the quartic functional equation f(2x + y) + f(2x - y) = 4f(x + y) + 24f(x) - 6f(y) in random normed spaces. Copyright (C) 2008 E. Baktash et al.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] On the Stability of Cubic Mappings and Quadratic Mappings in Random Normed Spaces
    E. Baktash
    Y. J. Cho
    M. Jalili
    R. Saadati
    S. M. Vaezpour
    Journal of Inequalities and Applications, 2008
  • [2] Erratum to: A Note to Paper "On the Stability of Cubic Mappings and Quartic Mappings in Random Normed Spaces"
    R. Saadati
    S. M. Vaezpour
    Y. J. Cho
    Journal of Inequalities and Applications, 2009 (1)
  • [3] Ulam stability of a functional equation deriving from quadratic and additive mappings in random normed spaces
    Tamilvanan, Kandhasamy
    Lee, Jung Rye
    Park, Choonkil
    AIMS MATHEMATICS, 2021, 6 (01): : 908 - 924
  • [4] Stabilities of Cubic Mappings in Fuzzy Normed Spaces
    Ghaffari, Ali
    Alinejad, Ahmad
    ADVANCES IN DIFFERENCE EQUATIONS, 2010,
  • [5] Stabilities of Cubic Mappings in Fuzzy Normed Spaces
    Ali Ghaffari
    Ahmad Alinejad
    Advances in Difference Equations, 2010
  • [6] Stability of mappings on multi-normed spaces
    Dales, H. G.
    Moslehian, Mohammad Sal
    GLASGOW MATHEMATICAL JOURNAL, 2007, 49 : 321 - 332
  • [7] STABILITY AND HYPERSTABILITY OF MULTI-ADDITIVE-CUBIC MAPPINGS IN INTUITIONISTIC FUZZY NORMED SPACES
    Ramzanpour, Elahe
    Bodaghi, Abasalt
    Gilani, Alireza
    HONAM MATHEMATICAL JOURNAL, 2020, 42 (02): : 391 - 409
  • [8] Hyers-Ulam Stability of Cubic Mappings in Non-Archimedean Normed Spaces
    Mirmostafaee, Alireza Kamel
    KYUNGPOOK MATHEMATICAL JOURNAL, 2010, 50 (02): : 315 - 327
  • [9] Approximate Quadratic-Additive Mappings in Fuzzy Normed Spaces
    Chang, Ick-Soon
    Lee, Yang-Hi
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2014, 2014
  • [10] Local stability of mappings on multi-normed spaces
    Park, Choonkil
    Noori, Batool
    Moghimi, M. B.
    Najati, Abbas
    Rassias, J. M.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)