Noise Figure Estimation of EDFA Based on Gradient Boosting Regression Approach for THz Applications

被引:1
|
作者
Sadik, Serif Ali [1 ]
机构
[1] Kutahya Dumlupinar Univ, Photon Technol Applicat & Res Ctr, Kutahya, Turkey
关键词
erbium-doped fiber amplifier; noise figure; machine learning; gradient boosting algorithm; FIBER;
D O I
10.1109/MTTW56973.2022.9942534
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Optical communication systems operating in the THz region require monitoring and control of transmission quality for higher network performance. Erbium-doped fiber amplifiers (EDFA) are one of the most important elements of such systems and input power and wavelength depended gain and noise characteristics of EDFAs complicate the network control. In this work, noise figure (NF) parameter of an EDFA was estimated with gradient boosting regressor model. The training and test data for the model were collected experimentally. The predicted values and real values of NF were fitted well with a coefficient of determination value of 0.9742, mean absolute error of 03428, and the root mean square error of 0.4429.
引用
收藏
页码:86 / 89
页数:4
相关论文
共 50 条
  • [1] A novel gradient boosting approach for imbalanced regression
    Zhang, Wenchao
    Shi, Peixin
    Jia, Pengjiao
    Zhou, Xiaoqi
    NEUROCOMPUTING, 2024, 601
  • [2] A gradient boosting regression based approach for energy consumption prediction in buildings
    Al Bataineh, Ali S.
    ADVANCES IN ENERGY RESEARCH, 2019, 6 (02): : 91 - 101
  • [3] Mineral grade estimation using gradient boosting regression trees
    Kaplan, Umit Emrah
    Dagasan, Yasin
    Topal, Erkan
    INTERNATIONAL JOURNAL OF MINING RECLAMATION AND ENVIRONMENT, 2021, 35 (10) : 728 - 742
  • [4] Gain and noise figure improvements in a shorter wavelength region of EDFA using a macrobending approach
    Daud, S. A.
    Emami, S. D.
    Mohamed, K. S.
    Yusoff, N. M.
    Aminudin, L.
    Abdul-Rashid, H. A.
    Harun, S. W.
    Ahmad, H.
    Mokhtar, M. R.
    Yusoff, Z.
    Rahman, F. A.
    LASER PHYSICS, 2008, 18 (11) : 1362 - 1364
  • [5] A gradient-based boosting algorithm for regression problems
    Zemel, RS
    Pitassi, T
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 13, 2001, 13 : 696 - 702
  • [6] Predicting Zillow Estimation Error Using Linear Regression and Gradient Boosting
    Sangani, Darshan
    Erickson, Kelby
    Al Hasan, Mohammad
    2017 IEEE 14TH INTERNATIONAL CONFERENCE ON MOBILE AD HOC AND SENSOR SYSTEMS (MASS), 2017, : 530 - 534
  • [7] Setup for EDFA stages based on pump power splitting yielding improved noise figure
    Rapp, Lutz
    EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, 2007, 18 (04): : 381 - 387
  • [8] Water quality prediction and classification based on principal component regression and gradient boosting classifier approach
    Khan, Md. Saikat Islam
    Islam, Nazrul
    Uddin, Jia
    Islam, Sifatul
    Nasir, Mostofa Kamal
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (08) : 4773 - 4781
  • [9] Gradient boosting regression for faster Partitioned Iterated Function Systems-based head pose estimation
    Barra, Paola
    Distasi, Riccardo
    Pero, Chiara
    Ricciardi, Stefano
    Tucci, Maurizio
    IET BIOMETRICS, 2022, 11 (04) : 279 - 288
  • [10] An iterative bidirectional gradient boosting approach for CVR baseline estimation
    Lee, Han Pyo
    Li, Yiyan
    Song, Lidong
    Wu, Di
    Lu, Ning
    APPLIED ENERGY, 2024, 369