Fading absorption in non-linear elliptic equations

被引:6
|
作者
Marcus, Moshe [1 ]
Shishkov, Andrey [2 ]
机构
[1] Technion Haifa, Dept Math, Haifa, Israel
[2] NAS Ukraine, Inst Appl Math & Mech, Donetsk, Ukraine
基金
以色列科学基金会;
关键词
ASYMPTOTIC-BEHAVIOR; POSITIVE SOLUTIONS; DIFFUSION; TRACE;
D O I
10.1016/j.anihpc.2012.08.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the equation -Delta u + h(x)vertical bar u vertical bar(q-1) u = 0, q > 1, in R-+(N) = RN-1 x R+ where h is an element of C(<(R-+(N))over bar>), h >= 0. Let (x(1), ... , x(N)) be a coordinate system such that R-+(N) = [x(N) > 0] and denote a point x is an element of R-N by (x', x(N)). Assume that h(x', x(N)) > 0 when x' not equal 0 but h(x', x(N)) -> 0 as vertical bar x'vertical bar -> 0. For this class of equations we obtain sharp necessary and sufficient conditions in order that singularities on the boundary do not propagate in the interior. (C) 2012 Elsevier Masson SAS. All rights reserved.
引用
下载
收藏
页码:315 / 336
页数:22
相关论文
共 50 条