THERMAL PERFORMANCE ANALYSIS OF MULTI-LAYER THERMAL ENERGY STORAGE TANK USING DIFFERENT PHASE CHANGE MATERIALS

被引:0
|
作者
Azam, Md. Ali [1 ]
Mamun, Mohammad Arif Hasan [1 ]
机构
[1] Bangladesh Univ Engn & Technol, Dept Mech Engn, Dhaka, Bangladesh
关键词
Computational; phase change; renewable energy; energy storage; HEAT-TRANSFER; SYSTEM; PCM;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A thermocline thermal energy storage (TES) tank is the key element of storing thermal energy for concentrated solar power (CSP) plants. This paper focuses on the numerical analysis of the single-phase thermal energy storage (TES) and the twophase latent heat thermal energy storage (LHTES) for singlelayered and multi-layered phase change materials (MLPCMs) using molten salt, FLiNaK, a eutectic mixture of 46.5%LiF, 11.5%NaF, and 42% KF as the heat transfer fluid. The heat transfer module for the computational domain is analyzed using the Dispersion-Concentric model which is based on energy equations and is solved by the finite element method. The results of the TES were compared with that of an existing numerical study in the literature, and they were found to be reasonably in agreement. The high thermal conductivity and specific heat capacity offered to the LHTES by the PCMs result in the best charging and discharging thermal cycle. The study helps us to understand the thermal behavior of temperature inside the tank for different PCMs and from the comparative thermal analysis of the study, it is possible to choose the best PCM among the alternatives.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [1] Thermal performance characterization of a thermal energy storage tank with various phase change materials
    Hathal M.M.
    Al-Jadir T.
    Al-Sheikh F.
    Edan M.S.
    Haider M.J.
    Rsool R.A.
    Haider A.J.
    Badawy T.
    Al jubori A.M.
    International Journal of Thermofluids, 2023, 18
  • [2] Melting performance analysis of phase change materials in different finned thermal energy storage
    Zhang, Shengqi
    Pu, Liang
    Xu, Lingling
    Liu, Ran
    Li, Yanzhong
    APPLIED THERMAL ENGINEERING, 2020, 176 (176)
  • [3] Numerical simulation on the thermal performance enhancement of energy storage tank with phase change materials
    Tian, Yang
    Zhao, Ming
    JOURNAL OF THERMAL SCIENCE AND TECHNOLOGY, 2019, 14 (02):
  • [4] Review of Stratification using Phase Change Materials for the Different Aspect Ratio of Tank for Thermal Energy Storage Application
    Shanmugavalli P.
    Rajaraman R.
    International Journal of Vehicle Structures and Systems, 2023, 15 (05) : 599 - 602
  • [5] ANALYSIS OF THERMAL CHARACTERISTICS AND THERMAL STORAGE PERFORMANCE OF ENERGY-SAVING PHASE CHANGE THERMAL STORAGE MATERIALS IN BUILDINGS
    Chen, Ximo
    THERMAL SCIENCE, 2024, 28 (2B): : 1509 - 1517
  • [6] Solar-thermal conversion and thermal energy storage of different phase change materials
    Emadoddin Erfani Farsi Eidgah
    Mohammad Mustafa Ghafurian
    Ali Tavakoli
    Ali Mortazavi
    Ali Kianifar
    Journal of Thermal Analysis and Calorimetry, 2023, 148 : 8051 - 8060
  • [7] Solar-thermal conversion and thermal energy storage of different phase change materials
    Eidgah, Emadoddin Erfani Farsi
    Ghafurian, Mohammad Mustafa
    Tavakoli, Ali
    Mortazavi, Ali
    Kianifar, Ali
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2023, 148 (16) : 8051 - 8060
  • [8] Analysis of cold thermal energy storage using phase change materials in freezers
    Ghodrati, Armin
    Zahedi, Rahim
    Ahmadi, Abolfazl
    JOURNAL OF ENERGY STORAGE, 2022, 51
  • [9] Study of Thermal Energy Storage using Phase Change Materials
    Paul, Dobrescu
    Ionescu, Constantin
    Necula, Horia
    2017 8TH INTERNATIONAL CONFERENCE ON ENERGY AND ENVIRONMENT (CIEM), 2017, : 162 - 166
  • [10] Thermal Analysis of Encapsulated Phase Change Materials for Energy Storage
    Zhao, Weihuan
    Oztekin, Alparslan
    Neti, Sudhakar
    Tuzla, Kemal
    Misiolek, Wojciech M.
    Chen, John C.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 4, PTS A AND B, 2012, : 831 - 837