Velocity and energy distributions in microcanonical ensembles of hard spheres

被引:11
|
作者
Scalas, Enrico [1 ,2 ]
Gabriel, Adrian T. [3 ,4 ]
Martin, Edgar [3 ,4 ]
Germano, Guido [5 ,6 ]
机构
[1] Univ Sussex, Sch Math & Phys Sci, Brighton BN1 9RH, E Sussex, England
[2] Basque Ctr Appl Math, Bilbao 48009, Basque Country, Spain
[3] Philipps Univ Marburg, Dept Chem, D-35032 Marburg, Germany
[4] Philipps Univ Marburg, WZMW, D-35032 Marburg, Germany
[5] UCL, Dept Comp Sci, London WC1E 6BT, England
[6] Univ London London Sch Econ & Polit Sci, Syst Risk Ctr, London WC2A 2AE, England
基金
英国经济与社会研究理事会;
关键词
MOLECULAR-DYNAMICS; STATISTICAL EQUILIBRIUM; KAC EQUATION; NORMALITY; CUTOFF; MODELS; LAW;
D O I
10.1103/PhysRevE.92.022140
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In a microcanonical ensemble (constant NVE, hard reflecting walls) and in a molecular dynamics ensemble (constant NVEPG, periodic boundary conditions) with a number N of smooth elastic hard spheres in a d-dimensional volume V having a total energy E, a total momentum P, and an overall center of mass position G, the individual velocity components, velocity moduli, and energies have transformed beta distributions with different arguments and shape parameters depending on d, N, E, the boundary conditions, and possible symmetries in the initial conditions. This can be shown marginalizing the joint distribution of individual energies, which is a symmetric Dirichlet distribution. In the thermodynamic limit the beta distributions converge to gamma distributions with different arguments and shape or scale parameters, corresponding respectively to the Gaussian, i.e., Maxwell-Boltzmann, Maxwell, and Boltzmann or Boltzmann-Gibbs distribution. These analytical results agree with molecular dynamics and Monte Carlo simulations with different numbers of hard disks or spheres and hard reflecting walls or periodic boundary conditions. The agreement is perfect with our Monte Carlo algorithm, which acts only on velocities independently of positions with the collision versor sampled uniformly on a unit half sphere in d dimensions, while slight deviations appear with our molecular dynamics simulations for the smallest values of N.
引用
收藏
页数:11
相关论文
共 50 条