Continuous-energy Monte Carlo neutron transport on GPUs in the Shift code

被引:28
|
作者
Hamilton, Steven P. [1 ]
Evans, Thomas M. [1 ]
机构
[1] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA
关键词
Radiation transport; Monte Carlo; GPU; GENERAL 3D GEOMETRIES; CAPABILITIES; ALGORITHMS; FRAMEWORK; WARP;
D O I
10.1016/j.anucene.2019.01.012
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
A continuous-energy Monte Carlo neutron transport solver executing on GPUs has been developed within the Shift code. Several algorithmic approaches are considered, including both history-based and event-based implementations. Unlike in previous work involving multigroup Monte Carlo transport, it is demonstrated that event-based algorithms significantly outperform a history-based approach for continuous-energy transport as a result of increased device occupancy and reduced thread divergence. Numerical results are presented for detailed full-core models of a small modular reactor (SMR), including a model containing depleted fuel materials. These results demonstrate the substantial gains in performance that are possible with the latest-generation of GPUs. On the depleted SMR core configuration, an NVIDIA P100 GPU with 56 streaming multiprocessors provides performance equivalent to 90 CPU cores, and the latest V100 GPU with 80 multiprocessors offers the performance of more than 150 CPU cores. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:236 / 247
页数:12
相关论文
共 50 条