Unstructured overset incompressible computational fluid dynamics for unsteady wind turbine simulations

被引:23
|
作者
Lynch, C. E. [1 ]
Smith, M. J. [1 ]
机构
[1] Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
CFD; overset; yawed flow; unstructured; RANS; LES; trim; NAVIER-STOKES; AERODYNAMICS; AIRFOILS;
D O I
10.1002/we.1532
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Overset computational fluid dynamics (CFD) methods are the most sophisticated methods currently available to predict the unsteady motion of wind turbine blades without the need for additional simplifications or restrictions on the turbine operational conditions. An unstructured implementation of the governing equations of motion permits rapid modeling of the salient components, such as nacelles, towers and other localized obstructions of interest. A time-accurate incompressible formulation accelerates the convergence of the solution, in addition to eliminating the need for low-Mach number preconditioning, which can be problematic and computationally expensive for time-accurate simulations. The use of a hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence method is observed to improve the prediction and extent of separation, as well as integrated performance variables for stalled rotors under fully turbulent conditions. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:1033 / 1048
页数:16
相关论文
共 50 条
  • [1] Unsteady flow over offshore wind turbine airfoils and aerodynamic loads with computational fluid dynamic simulations
    M. Abbaspour
    A. R. Radmanesh
    M. R. Soltani
    [J]. International Journal of Environmental Science and Technology, 2016, 13 : 1525 - 1540
  • [2] Unsteady flow over offshore wind turbine airfoils and aerodynamic loads with computational fluid dynamic simulations
    Abbaspour, M.
    Radmanesh, A. R.
    Soltani, M. R.
    [J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2016, 13 (06) : 1525 - 1540
  • [3] Dynamic overset CFD simulations of wind turbine aerodynamics
    Li, Yuwei
    Paik, Kwang-Jun
    Xing, Tao
    Carrica, Pablo M.
    [J]. RENEWABLE ENERGY, 2012, 37 (01) : 285 - 298
  • [4] Flow analysis of shrouded small wind turbine with a simple frustum diffuser with computational fluid dynamics simulations
    Jafari, S. A. H.
    Kosasih, B.
    [J]. JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2014, 125 : 102 - 110
  • [5] Comparison of the Blade Element Momentum Theory with Computational Fluid Dynamics for Wind Turbine Simulations in Turbulent Inflow
    Ehrich, Sebastian
    Schwarz, Carl Michael
    Rahimi, Hamid
    Stoevesandt, Bernhard
    Peinke, Joachim
    [J]. APPLIED SCIENCES-BASEL, 2018, 8 (12):
  • [6] Review of computational fluid dynamics for wind turbine wake aerodynamics
    Sanderse, B.
    van der Pijl, S. P.
    Koren, B.
    [J]. WIND ENERGY, 2011, 14 (07) : 799 - 819
  • [7] Computational Fluid Dynamics Analysis for Wind Turbine Tunnel on Train
    Ganapathi, R.
    Jayashree, R.
    Harinarayana, T.
    [J]. International Journal of Vehicle Structures and Systems, 2024, 16 (02) : 302 - 305
  • [8] Analysis of the power augmentation mechanisms of diffuser shrouded micro wind turbine with computational fluid dynamics simulations
    Jafari, Seyed A.
    Kosasih, Buyung
    [J]. WIND AND STRUCTURES, 2014, 19 (02) : 199 - 217
  • [9] Challenges in unstructured mesh generation for practical and efficient computational fluid dynamics simulations
    Ito, Yasushi
    [J]. COMPUTERS & FLUIDS, 2013, 85 : 47 - 52
  • [10] Comparisons of wind tunnel experiments and computational fluid dynamics simulations
    Shen, Q
    Uselton, S
    Pang, A
    [J]. JOURNAL OF VISUALIZATION, 2003, 6 (01) : 31 - 39