The interfacial structure, electronic structure, work of adhesion and interfacial energy of the Al4Sr (100)/Mg2Si(100) interface have been studied with first-principles calculations to clarify the heterogeneous nucleation potential of the Al4Sr particle for a primary Mg2Si phase. Eight models of the Al4Sr(100)/Mg2Si(100) interface with OT and HCP stacking were adopted for the interfacial model geometries. The results show that the Al-Mg terminations of HCP and Al-Si terminations of OT stacking, with lower interfacial spacing and higher interfacial adhesion, are the most favorable structures after relaxation. Al-Mg- and Al-Si-terminated interfaces, with a lower interfacial distance, form chemical bonds more easily. Metallic bonds are formed near the Al-Mg-terminated interface, while the Al-Si-terminated interface exhibits predominantly covalent bond characteristics. Moreover, the calculated interfacial energies of both terminations are negative in conditions involving excess Mg atoms. The interfacial energies of Al-Si are lower than those of Al-Mg termination, indicating that the Al-Si-terminated interface is more stable. From thermodynamic analysis, we discover that the Al4Sr particle can be an effective heterogeneous nucleation substrate forMg(2)Si in a Mg-Al-Si alloy melt.