Nonequilibrium steady state of biochemical cycle kinetics under non-isothermal conditions

被引:4
|
作者
Jin, Xiao [1 ,2 ]
Ge, Hao [1 ,3 ]
机构
[1] Peking Univ, BICMR, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[3] Peking Univ, Biodynam Opt Imaging Ctr BIOPIC, Beijing 100871, Peoples R China
来源
NEW JOURNAL OF PHYSICS | 2018年 / 20卷
关键词
stochastic thermodynamics; cycle kinetics; reaction-rate formula; non-isothermal condition; CA-ATPASE; SYSTEMS; TIME; TEMPERATURE; CA2+-ATPASE; RETICULUM; TRANSPORT; BINDING; CELL;
D O I
10.1088/1367-2630/aab8cf
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The nonequilibrium steady state of isothermal biochemical cycle kinetics has been extensively studied, but that under non-isothermal conditions has been much less extensively investigated. When the heat exchange between subsystems is slow, the isothermal assumption of the whole system breaks down, as is true for many types of living organisms. Here, starting with a four-state model of molecular transporter across the cell membrane, we generalize the nonequilibrium steady-state theory of isothermal biochemical cycle kinetics to the circumstances with non-uniform temperatures of subsystems in terms of general master equation models. We obtain a new thermodynamic relationship between the chemical reaction rates and thermodynamic potentials in non-isothermal circumstances, based on the overdamped dynamics along the continuous reaction coordinate. We show that the entropy production can vary up to 3% in real cells, even when the temperature difference across the cell membrane is only approximately 1 K. We then decompose the total thermodynamic driving force into its thermal and chemical components and predict that the net flux of molecules transported by the molecular transporter can potentially go against the temperature gradient in the absence of a chemical driving force. Furthermore, we demonstrate that the simple application of the isothermal transition-state rate formula for each chemical reaction in terms of only the reactant' temperature is not thermodynamically consistent. Therefore, we mathematically derive several revised reaction rate formulas that are not only consistent with the new thermodynamic relationship but also approximate the exact reaction rate better than Kramers' rate formula under isothermal conditions.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Kinetics of solid state reactions under isothermal and non-isothermal conditions
    Kanungo, SB
    JOURNAL OF THE INDIAN CHEMICAL SOCIETY, 2005, 82 (04) : 315 - 328
  • [2] Steady-state biofilter performance under non-isothermal conditions
    Shareefdeen, Z.
    Shaikh, A. A.
    Ahmed, Adeeb
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2009, 48 (05) : 1040 - 1046
  • [3] THE CRYSTALLIZATION KINETICS OF POLYETHYLENE UNDER ISOTHERMAL AND NON-ISOTHERMAL CONDITIONS
    CHEW, S
    GRIFFITHS, JR
    STACHURSKI, ZH
    POLYMER, 1989, 30 (05) : 874 - 881
  • [4] On the quasi steady-state approximation in non-isothermal kinetics
    Popescu, C
    Segal, E
    Susan-Resiga, RF
    REVUE ROUMAINE DE CHIMIE, 1999, 44 (09) : 857 - 861
  • [5] Kinetics of magnetite oxidation under non-isothermal conditions
    Aref Sardari
    Eskandar Keshavarz Alamdari
    Mohammad Noaparast
    Sied Ziaedin Shafaei
    International Journal of Minerals Metallurgy and Materials, 2017, 24 (05) : 486 - 492
  • [6] Kinetics of tungsten carbidization under non-isothermal conditions
    Kharatyan, S. L.
    Chatilyan, H. A.
    Arakelyan, L. H.
    MATERIALS RESEARCH BULLETIN, 2008, 43 (04) : 897 - 906
  • [7] Kinetics of magnetite oxidation under non-isothermal conditions
    Sardari, Aref
    Alamdari, Eskandar Keshavarz
    Noaparast, Mohammad
    Shafaei, Sied Ziaedin
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2017, 24 (05) : 486 - 492
  • [8] Kinetics of magnetite oxidation under non-isothermal conditions
    Aref Sardari
    Eskandar Keshavarz Alamdari
    Mohammad Noaparast
    Sied Ziaedin Shafaei
    International Journal of Minerals, Metallurgy, and Materials, 2017, 24 : 486 - 492
  • [9] Transformation kinetics of alloys under non-isothermal conditions
    Massih, A. R.
    Jernkvist, L. O.
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2009, 17 (05)
  • [10] Pyrolysis kinetics of perfusion tubes under non-isothermal and isothermal conditions
    Wang, Jinxing
    Zhao, Haibo
    ENERGY CONVERSION AND MANAGEMENT, 2015, 106 : 1048 - 1056